Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IT takes steps to help people with joint disorders

10.12.2004


A new generation of devices to help people with joint disorders walk with ease and comfort are becoming a reality thanks to the work of GAIT, which is creating the world’s first ‘intelligent’ mechanical devices to support knee and ankle joints.



Due to end in August next year, the 36-month IST programme project is developing the most advanced leg supports designed to date, combining biomechanics with information technologies to produce more comfortable and effective devices that could benefit millions of people across Europe.

“The orthoses we are working with are apparatus that are attached to the leg to support the knees and ankles of people who have joint dysfunctions or lack muscle strength,” explains project coordinator José Luis Pons at the Instituto de Automática Industrial (IAI) in Spain. “Traditionally they [orthoses] are purely mechanical devices that provide rigidity to the leg when a patient is standing and allow it to flex when they are walking.”


Traditional devices, which rely exclusively on mechanical components, are often uncomfortable to wear and though they provide necessary support they do not necessarily allow patients to walk normally and with ease. The four GAIT partners are overcoming those problems by incorporating IT into orthoses, creating intelligent devices that adapt to the way patients’ move and the activities they perform.

Added intelligence through IT

“The orthoses we are designing are unique because they contain electronic sensors and actuators to monitor joint movement and adapt the orthosis to it,” Pons says.

Each leg orthosis contains two sets of sensors, one to measure the force being exerted by the patient’s movements on the joint and the other to determine the pressure being exerted on the patient’s leg by the orthosis itself. The actuators use the data obtained from the sensors to set and reset the movement parameters of the mechanical components of the orthosis, thereby allowing the patient to move more naturally.

“Without the incorporation of sensors and actuators, traditional orthoses often cause people to walk abnormally resulting in higher energy use and greater discomfort, something that is a significant problem especially for the elderly,” Pons notes. “With this intelligent system patients should be able to move more naturally because the device can react to the activities they are performing, providing them with greater comfort regardless of whether they are sitting, standing, walking or going up stairs.”

Besides giving the patient support, the mechanical components of the orthosis are designed to assist movement by acting much like a healthy joint, returning the energy from the patient’s stride to the leg and reducing the restrictions to movement. The sensors also monitor the comfort levels of the patient, a critically important issue given that orthoses are often attached to patients’ legs for long periods of time.

“Because orthotic devices are attached tightly around the joints it is important that they are set correctly to ensure maximum comfort and reduce the risk of friction which could cause ulcers and sores when the patient sweats or when the weather is hot and humid,” the coordinator explains.

All the data collected by the sensors are stored in microchips in the orthoses which can be accessed and controlled wirelessly by doctors. The measurements allow specialists to accurately monitor how well the patient is responding to treatment and to adjust the movement parameters of the device with high precision and therefore better adapt it to patients’ needs.

Prototypes take steps towards expanding market

The project partners have so far developed several prototypes of their intelligent orthoses and have tested them on healthy people. According to Pons, the project is planning to run clinical trials with around a dozen patients in Spain and The Netherlands from next March as one of the final steps toward developing a commercially available variant of the system.

The project coordinator expects the GAIT devices to be particularly beneficial to anyone with movement problems caused by neurological disorders or diseases such as arthritis, polio or even strokes. In Europe alone more than 100 million people are estimated to suffer from some form of arthritis in many cases affecting their knee and ankle joints, making it one of the leading causes of disability across the continent.

“A preliminary evaluation of the market shows that these orthoses could benefit a huge number of people of any age and with a wide range of disabilities,” Pons says. “In addition, because Europe has an ageing population the incidence of age-related disabilities, such as arthritis, is likely to increase.”

With GAIT arthritis sufferers and people with other joint and muscle disorders are likely to regain much of the freedom of movement their disability has claimed from them, potentially allowing millions of people to live a more comfortable and active life.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>