Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IT takes steps to help people with joint disorders

10.12.2004


A new generation of devices to help people with joint disorders walk with ease and comfort are becoming a reality thanks to the work of GAIT, which is creating the world’s first ‘intelligent’ mechanical devices to support knee and ankle joints.



Due to end in August next year, the 36-month IST programme project is developing the most advanced leg supports designed to date, combining biomechanics with information technologies to produce more comfortable and effective devices that could benefit millions of people across Europe.

“The orthoses we are working with are apparatus that are attached to the leg to support the knees and ankles of people who have joint dysfunctions or lack muscle strength,” explains project coordinator José Luis Pons at the Instituto de Automática Industrial (IAI) in Spain. “Traditionally they [orthoses] are purely mechanical devices that provide rigidity to the leg when a patient is standing and allow it to flex when they are walking.”


Traditional devices, which rely exclusively on mechanical components, are often uncomfortable to wear and though they provide necessary support they do not necessarily allow patients to walk normally and with ease. The four GAIT partners are overcoming those problems by incorporating IT into orthoses, creating intelligent devices that adapt to the way patients’ move and the activities they perform.

Added intelligence through IT

“The orthoses we are designing are unique because they contain electronic sensors and actuators to monitor joint movement and adapt the orthosis to it,” Pons says.

Each leg orthosis contains two sets of sensors, one to measure the force being exerted by the patient’s movements on the joint and the other to determine the pressure being exerted on the patient’s leg by the orthosis itself. The actuators use the data obtained from the sensors to set and reset the movement parameters of the mechanical components of the orthosis, thereby allowing the patient to move more naturally.

“Without the incorporation of sensors and actuators, traditional orthoses often cause people to walk abnormally resulting in higher energy use and greater discomfort, something that is a significant problem especially for the elderly,” Pons notes. “With this intelligent system patients should be able to move more naturally because the device can react to the activities they are performing, providing them with greater comfort regardless of whether they are sitting, standing, walking or going up stairs.”

Besides giving the patient support, the mechanical components of the orthosis are designed to assist movement by acting much like a healthy joint, returning the energy from the patient’s stride to the leg and reducing the restrictions to movement. The sensors also monitor the comfort levels of the patient, a critically important issue given that orthoses are often attached to patients’ legs for long periods of time.

“Because orthotic devices are attached tightly around the joints it is important that they are set correctly to ensure maximum comfort and reduce the risk of friction which could cause ulcers and sores when the patient sweats or when the weather is hot and humid,” the coordinator explains.

All the data collected by the sensors are stored in microchips in the orthoses which can be accessed and controlled wirelessly by doctors. The measurements allow specialists to accurately monitor how well the patient is responding to treatment and to adjust the movement parameters of the device with high precision and therefore better adapt it to patients’ needs.

Prototypes take steps towards expanding market

The project partners have so far developed several prototypes of their intelligent orthoses and have tested them on healthy people. According to Pons, the project is planning to run clinical trials with around a dozen patients in Spain and The Netherlands from next March as one of the final steps toward developing a commercially available variant of the system.

The project coordinator expects the GAIT devices to be particularly beneficial to anyone with movement problems caused by neurological disorders or diseases such as arthritis, polio or even strokes. In Europe alone more than 100 million people are estimated to suffer from some form of arthritis in many cases affecting their knee and ankle joints, making it one of the leading causes of disability across the continent.

“A preliminary evaluation of the market shows that these orthoses could benefit a huge number of people of any age and with a wide range of disabilities,” Pons says. “In addition, because Europe has an ageing population the incidence of age-related disabilities, such as arthritis, is likely to increase.”

With GAIT arthritis sufferers and people with other joint and muscle disorders are likely to regain much of the freedom of movement their disability has claimed from them, potentially allowing millions of people to live a more comfortable and active life.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>