Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Add an ’E’ to the alphabet for identifying melanoma

08.12.2004


One more letter should be added to the alphabetic list of warning signs of melanoma, a potentially deadly skin cancer, according to a group of NYU School of Medicine dermatologists and their Australian colleagues. Based on a review of the medical literature, they recommend adding the letter "E" -- for "evolving" -- to the first four letters of the alphabet that are already used widely to help physicians and adults identify suspicious moles on the skin.



Their report is published in the Dec. 8, 2004, issue of the Journal of the American Medical Association (JAMA).

Almost 20 years ago, a group of NYU dermatologists introduced the ABCD acronym for recognizing growths on the skin that could be early melanomas. They devised the rule based on many years of clinical experience, which taught them that early melanomas can be identified by their asymmetry, uneven borders, colors, and size.


The warning signs are: "A" for asymmetry; one half of a mole doesn’t match the other half; "B" for border irregularity; the edges of a mole are ragged, notched or blurred; "C" for color; a non-uniform mixture of brown, black, red, white, or blue; and "D" for diameter greater than 6 millimeters, the size of a pencil eraser.

The ABCD rule has been helpful in identifying early melanoma. But now the original group of NYU dermatologists who devised the rule, along with some of their younger colleagues, recommends expanding the rule to recognize that early melanomas frequently change in appearance. This is especially true for a type of melanoma called nodular that doesn’t fit neatly into the ABCD criteria, explains David Polsky, M.D., Ph.D., a dermatologist and one of the authors of the new report. Dr. Polsky is Associate Director of the NYU Department of Dermatology’s Pigmented Lesions Section.

Nodular melanoma accounts for 10 to 15 percent of all melanomas. One of four basic types of melanomas, the nodular form is the most aggressive. But it frequently doesn’t look suspicious, notes Dr. Polsky, because it may not have the ABC features of early melanomas. However, there are many reports in the medical literature that highlight the changing nature of these lesions, which is the most important clue to their diagnosis.

In a study of 125 patients cited in the JAMA report, for example, 78 percent of patients with nodular melanoma noted some kind of a change in the appearance of their lesion. Patients with other forms of melanoma in the study also noted a change the appearance of their lesion. Moreover, in another cited study of 169 pigmented lesions, dermatologists noted that the lesions that had changed were at least four times more likely to be melanoma than the lesions that did not change.

"An evolving lesion is one which is changing in terms of the five S’s -- size, shape, symptoms such as itching or tenderness, surface bleeding, or shades of color," says Dr. Polsky. "Essentially, a lesion that significantly changes is a concerning lesion."

The incidence of melanoma continues to rise. This year it is expected to strike 55,100 people in the United States, and some 7,910 people with the disease are expected to die, according to the American Cancer Society. Excessive exposure to sunlight, a fair complexion, a family history of melanoma, and numerous moles, among other factors, place people at higher risk for developing the disease. With early detection and prompt treatment, however, melanoma is highly curable.

Jennifer Berman | EurekAlert!
Further information:
http://www.med.nyu.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>