Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers to develop ’smart drug’ to repair psychiatric disorders

29.11.2004


“Smart” drugs capable of targeting specific brain cells to control psychiatric disorders such as autism and schizophrenia may be ready for early clinical trials within three years, with the launch of a $1.5 million project to take place at the Brain Research Centre (BRC), a partnership of the University of British Columbia and Vancouver Coastal Health Research Institute (VCHRI).



The new drugs would be the first significant change in decades to medications used to treat psychiatric disorders, says neuroscientist and team leader Yu Tian Wang, a UBC professor of Medicine and BRC member.

“We’re designing a whole new generation of medications that will work only on brain cells in areas that need to be repaired,” says Wang. “This new type of drug will correct abnormal brain functions in a targeted way, so patients don’t experience the side effects found in existing medications that affect the whole brain.”


One of only three investigations funded in NeuroScience Canada’s new Brain Repair Program, the project brings together five researchers from across Canada, including three investigators from the BRC at UBC Hospital.

Healthy brain functioning relies on a balance between the chemical messengers that stimulate brain cell activity (excitatory neurotransmitters) and those that diminish activity (inhibitory neurotransmitters.)

When balance is disrupted, the flow of information among brain cells in certain areas becomes confused. The result is impairments in perception, thought and behaviour seen in patients with brain disorders ranging from autism to major psychoses including schizophrenia and depression.

Using sophisticated equipment to view, study and manipulate brain messaging at the cellular level, the team will test their design of a type of drug that can fine-tune communication between brain cells and bring excitatory and inhibitory activity into a healthy balance.

Existing anti-psychotic drugs adjust communication on cell surfaces throughout the brain. Balance is restored in affected areas, however, the drugs may cause imbalance in normal, unaffected areas, leading to negative side effects. Side effects can range from sluggishness, insomnia and anxiety to severe psychoses, and limit prolonged use of these medications.

The new generation of “smart” drugs will target only the cells where communication balance is impaired, leaving healthy areas of the brain unaffected.

Wang estimates the new type of drug could be available to patients within five to 10 years.

Brain and nervous system disorders affect one in five Canadians and are among the leading causes of death in this country and are the leading cause of disability. Health Canada has estimated the economic burden of these disorders at $22.7 billion and costs are expected to rise significantly as the population ages.

Other team members are: (in alphabetical order) Assistant Prof. Alaa El-Husseini, UBC Dept. of Psychiatry and BRC; Associate Prof. Stephen Ferguson, University of Western Ontario; Assistant Prof. Ridha Joober, McGill University; Professor Anthony Phillips, UBC Dept. of Psychiatry and BRC.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca
http://www.neurosciencecanada.ca.

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>