Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers to develop ’smart drug’ to repair psychiatric disorders

29.11.2004


“Smart” drugs capable of targeting specific brain cells to control psychiatric disorders such as autism and schizophrenia may be ready for early clinical trials within three years, with the launch of a $1.5 million project to take place at the Brain Research Centre (BRC), a partnership of the University of British Columbia and Vancouver Coastal Health Research Institute (VCHRI).



The new drugs would be the first significant change in decades to medications used to treat psychiatric disorders, says neuroscientist and team leader Yu Tian Wang, a UBC professor of Medicine and BRC member.

“We’re designing a whole new generation of medications that will work only on brain cells in areas that need to be repaired,” says Wang. “This new type of drug will correct abnormal brain functions in a targeted way, so patients don’t experience the side effects found in existing medications that affect the whole brain.”


One of only three investigations funded in NeuroScience Canada’s new Brain Repair Program, the project brings together five researchers from across Canada, including three investigators from the BRC at UBC Hospital.

Healthy brain functioning relies on a balance between the chemical messengers that stimulate brain cell activity (excitatory neurotransmitters) and those that diminish activity (inhibitory neurotransmitters.)

When balance is disrupted, the flow of information among brain cells in certain areas becomes confused. The result is impairments in perception, thought and behaviour seen in patients with brain disorders ranging from autism to major psychoses including schizophrenia and depression.

Using sophisticated equipment to view, study and manipulate brain messaging at the cellular level, the team will test their design of a type of drug that can fine-tune communication between brain cells and bring excitatory and inhibitory activity into a healthy balance.

Existing anti-psychotic drugs adjust communication on cell surfaces throughout the brain. Balance is restored in affected areas, however, the drugs may cause imbalance in normal, unaffected areas, leading to negative side effects. Side effects can range from sluggishness, insomnia and anxiety to severe psychoses, and limit prolonged use of these medications.

The new generation of “smart” drugs will target only the cells where communication balance is impaired, leaving healthy areas of the brain unaffected.

Wang estimates the new type of drug could be available to patients within five to 10 years.

Brain and nervous system disorders affect one in five Canadians and are among the leading causes of death in this country and are the leading cause of disability. Health Canada has estimated the economic burden of these disorders at $22.7 billion and costs are expected to rise significantly as the population ages.

Other team members are: (in alphabetical order) Assistant Prof. Alaa El-Husseini, UBC Dept. of Psychiatry and BRC; Associate Prof. Stephen Ferguson, University of Western Ontario; Assistant Prof. Ridha Joober, McGill University; Professor Anthony Phillips, UBC Dept. of Psychiatry and BRC.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca
http://www.neurosciencecanada.ca.

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>