Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program helps doctors diagnose lung cancer

29.11.2004


CAD software helps distinguish benign, malignant nodules seen on CT scans

Not all masses are cancer. When a person undergoes a scan to identify a lump or nodule, the radiologist looks at the texture, the borders and the shape to determine if it is malignant or just a benign growth.

Researchers at the University of Michigan Comprehensive Cancer Center are developing computer-aided diagnosis (CAD) methods to make that assessment easier. A computer program reads the same scans the radiologist views, and the combined judgment of the computer and radiologist helps detect more cancers, the researchers found.



"Our system is designed to help the radiologist. From our experiences in evaluating CAD for breast cancer, using computer aids significantly improves the performance of the radiologist in predicting malignancies of the masses. Radiologists with computers are able to detect more cancers than radiologists by themselves. We expect that CAD for lung cancer can achieve similar results," says Lubomir Hadjiyski, Ph.D., research assistant professor of Radiology at the U-M Medical School. Hadjiyski will present results of the study Sunday, Nov. 28, at the Radiological Society of North America’s annual meeting in Chicago.

In the study, researchers looked at 41 CT scans that showed nodules in the lungs. Current scans and previous scans were fed through a computer program specially designed by the U-M researchers to evaluate the size, texture, density and change over time of the nodules. Based on that information, the computer determines how likely the nodule is cancerous.

Previous attempts at computer-aided diagnosis have the computer analyze only the current scan. By allowing the computer to read and compare a series of scans, it gets a complete picture and has the same information the radiologist has.

A CAD system is designed to provide a second opinion to radiologists. The computer analyzes the images with computer-vision techniques specially designed for a given type of cancer or disease. At the same time, the radiologist examines the images and evaluates the likelihood of cancer. The radiologist then compares the two results and makes a final decision.

In many cases, the computer and the radiologist might come to the same conclusion. In other cases, though, the computer may determine a low rate of malignancy for a patient where the radiologist is on the fence. This could tip the scale against performing a biopsy. And if there’s a big difference between the radiologist’s judgment and the computer’s, the patient can be called back for a second look.

"The radiologist is not perfect and the computer is not perfect, but working together they detect more cancers," says Hadjiyski says.

Hadjiyski and his team have developed a similar program to detect breast cancer, and initial testing there is promising. The computer program for both lung and breast cancer needs FDA approval before it can be offered clinically. Hadjiyski stresses that computers will never replace the radiologist entirely but that the technology is meant to complement the radiologist’s judgment.

The one flaw with the computer-aided system is it may return false positive results, identifying masses as cancerous when they are benign. Hadjiyski notes, though, that overall the system detects more cancers. As the researchers fine-tune the technology, they hope to see fewer false positives, and may actually help radiologists identify benign lesions and reduce the number of people undergoing biopsies. Researchers hope next to develop a system that will both detect a lesion and identify it as malignant or benign.

In addition to Hadjiyski, researchers were Berkman Sahiner, Ph.D., associate professor of Radiology; Heang-Ping Chan, Ph.D., professor of Radiology; Naama Bogot, M.D., clinical lecturer in Radiology; Philip Cascade, M.D., professor of Cardiology and Radiology; and Ella Kazerooni, M.D., professor of Radiology.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>