Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program helps doctors diagnose lung cancer

29.11.2004


CAD software helps distinguish benign, malignant nodules seen on CT scans

Not all masses are cancer. When a person undergoes a scan to identify a lump or nodule, the radiologist looks at the texture, the borders and the shape to determine if it is malignant or just a benign growth.

Researchers at the University of Michigan Comprehensive Cancer Center are developing computer-aided diagnosis (CAD) methods to make that assessment easier. A computer program reads the same scans the radiologist views, and the combined judgment of the computer and radiologist helps detect more cancers, the researchers found.



"Our system is designed to help the radiologist. From our experiences in evaluating CAD for breast cancer, using computer aids significantly improves the performance of the radiologist in predicting malignancies of the masses. Radiologists with computers are able to detect more cancers than radiologists by themselves. We expect that CAD for lung cancer can achieve similar results," says Lubomir Hadjiyski, Ph.D., research assistant professor of Radiology at the U-M Medical School. Hadjiyski will present results of the study Sunday, Nov. 28, at the Radiological Society of North America’s annual meeting in Chicago.

In the study, researchers looked at 41 CT scans that showed nodules in the lungs. Current scans and previous scans were fed through a computer program specially designed by the U-M researchers to evaluate the size, texture, density and change over time of the nodules. Based on that information, the computer determines how likely the nodule is cancerous.

Previous attempts at computer-aided diagnosis have the computer analyze only the current scan. By allowing the computer to read and compare a series of scans, it gets a complete picture and has the same information the radiologist has.

A CAD system is designed to provide a second opinion to radiologists. The computer analyzes the images with computer-vision techniques specially designed for a given type of cancer or disease. At the same time, the radiologist examines the images and evaluates the likelihood of cancer. The radiologist then compares the two results and makes a final decision.

In many cases, the computer and the radiologist might come to the same conclusion. In other cases, though, the computer may determine a low rate of malignancy for a patient where the radiologist is on the fence. This could tip the scale against performing a biopsy. And if there’s a big difference between the radiologist’s judgment and the computer’s, the patient can be called back for a second look.

"The radiologist is not perfect and the computer is not perfect, but working together they detect more cancers," says Hadjiyski says.

Hadjiyski and his team have developed a similar program to detect breast cancer, and initial testing there is promising. The computer program for both lung and breast cancer needs FDA approval before it can be offered clinically. Hadjiyski stresses that computers will never replace the radiologist entirely but that the technology is meant to complement the radiologist’s judgment.

The one flaw with the computer-aided system is it may return false positive results, identifying masses as cancerous when they are benign. Hadjiyski notes, though, that overall the system detects more cancers. As the researchers fine-tune the technology, they hope to see fewer false positives, and may actually help radiologists identify benign lesions and reduce the number of people undergoing biopsies. Researchers hope next to develop a system that will both detect a lesion and identify it as malignant or benign.

In addition to Hadjiyski, researchers were Berkman Sahiner, Ph.D., associate professor of Radiology; Heang-Ping Chan, Ph.D., professor of Radiology; Naama Bogot, M.D., clinical lecturer in Radiology; Philip Cascade, M.D., professor of Cardiology and Radiology; and Ella Kazerooni, M.D., professor of Radiology.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>