Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program helps doctors diagnose lung cancer

29.11.2004


CAD software helps distinguish benign, malignant nodules seen on CT scans

Not all masses are cancer. When a person undergoes a scan to identify a lump or nodule, the radiologist looks at the texture, the borders and the shape to determine if it is malignant or just a benign growth.

Researchers at the University of Michigan Comprehensive Cancer Center are developing computer-aided diagnosis (CAD) methods to make that assessment easier. A computer program reads the same scans the radiologist views, and the combined judgment of the computer and radiologist helps detect more cancers, the researchers found.



"Our system is designed to help the radiologist. From our experiences in evaluating CAD for breast cancer, using computer aids significantly improves the performance of the radiologist in predicting malignancies of the masses. Radiologists with computers are able to detect more cancers than radiologists by themselves. We expect that CAD for lung cancer can achieve similar results," says Lubomir Hadjiyski, Ph.D., research assistant professor of Radiology at the U-M Medical School. Hadjiyski will present results of the study Sunday, Nov. 28, at the Radiological Society of North America’s annual meeting in Chicago.

In the study, researchers looked at 41 CT scans that showed nodules in the lungs. Current scans and previous scans were fed through a computer program specially designed by the U-M researchers to evaluate the size, texture, density and change over time of the nodules. Based on that information, the computer determines how likely the nodule is cancerous.

Previous attempts at computer-aided diagnosis have the computer analyze only the current scan. By allowing the computer to read and compare a series of scans, it gets a complete picture and has the same information the radiologist has.

A CAD system is designed to provide a second opinion to radiologists. The computer analyzes the images with computer-vision techniques specially designed for a given type of cancer or disease. At the same time, the radiologist examines the images and evaluates the likelihood of cancer. The radiologist then compares the two results and makes a final decision.

In many cases, the computer and the radiologist might come to the same conclusion. In other cases, though, the computer may determine a low rate of malignancy for a patient where the radiologist is on the fence. This could tip the scale against performing a biopsy. And if there’s a big difference between the radiologist’s judgment and the computer’s, the patient can be called back for a second look.

"The radiologist is not perfect and the computer is not perfect, but working together they detect more cancers," says Hadjiyski says.

Hadjiyski and his team have developed a similar program to detect breast cancer, and initial testing there is promising. The computer program for both lung and breast cancer needs FDA approval before it can be offered clinically. Hadjiyski stresses that computers will never replace the radiologist entirely but that the technology is meant to complement the radiologist’s judgment.

The one flaw with the computer-aided system is it may return false positive results, identifying masses as cancerous when they are benign. Hadjiyski notes, though, that overall the system detects more cancers. As the researchers fine-tune the technology, they hope to see fewer false positives, and may actually help radiologists identify benign lesions and reduce the number of people undergoing biopsies. Researchers hope next to develop a system that will both detect a lesion and identify it as malignant or benign.

In addition to Hadjiyski, researchers were Berkman Sahiner, Ph.D., associate professor of Radiology; Heang-Ping Chan, Ph.D., professor of Radiology; Naama Bogot, M.D., clinical lecturer in Radiology; Philip Cascade, M.D., professor of Cardiology and Radiology; and Ella Kazerooni, M.D., professor of Radiology.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>