Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the battle of Waterloo could help doctors fight death from multiple organ failure

23.11.2004


Waterloo’s battlefield is reigniting the debate about whether modern medicine is always good for you, according to University College London (UCL) scientists who are launching a study of why some critically ill patients recover and others die from multiple organ failure - the number one killer of patients in intensive care.

Speaking today at a public lecture held in London, Professor Mervyn Singer from UCL’s Institute of Intensive Care Medicine said the impressive survival statistics of injured soldiers at the battles of Waterloo and Trafalgar serve as a reminder of how we underestimate the human body’s ability to heal itself under the most extreme conditions. Of the 52 privates in the 13th Light Dragoons wounded by sabre, gunfire and cannon injuries at Waterloo, only two subsequently died.

Prof Singer says: “Despite the non-existence of antibiotics, blood transfusions, life-support machines and other paraphernalia of modern intensive care, most of these soldiers recovered, often from life-threatening injuries. Yet with all our technical advances in medicine, mortality rates from conditions such as sepsis (bacterial infection of the bloodstream) haven’t improved dramatically over the past century. “The question we need to ask ourselves is whether our present understanding of underlying pathology in medicine is leading us down the wrong path, and whether our current interventions may even be injurious to the healing process.



“Modern treatments trigger changes in the patient’s inflammatory and immune responses or influence circulatory, hormonal, bioenergetic and metabolic systems in ways we don’t appreciate. Even lowering the temperature of a feverish patient may be counter-productive. We may need to be more strategic in our treatments and therapies, tailoring them to how the body responds naturally to sepsis and other critical illnesses.”

Survival statistics from the battle of Waterloo throw up an even more radical theory – could it be that multiple organ failure, triggered by severe trauma or subsequent infection, actually represents the body’s last-ditch attempt to survive in the face of a critical illness? By switching itself off and becoming dormant, as with hibernating animals during extreme cold, the body may thus be able to tide itself through the critical period. Support for this theory comes from the fact that the organs invariably recover, to the point of appearing remarkably normal, within days to weeks when the patient survives.

Professor Singer and colleague Dr Paul Glynne from UCL’s Institute of Hepatology are about to embark on a large study of multiple organ failure induced by sepsis, which kills around a third of patients in intensive care. Ultimately, they hope that by understanding why people either survive or die from this condition, new therapies can be developed to reduce the period of illness and mortality rate.

Preliminary work suggests that the body’s ability to store and use energy efficiently may play a part in determining whether a patient will recover. A recent study by Dr Glynne and Prof Singer has linked leptin, the protein hormone regulating hunger, body weight and metabolism, to sepsis-induced organ failure and recovery.

Dr Glynne says: “The body’s inability to regulate energy expenditure seems to play a key role in the development of sepsis-induced multiple organ failure. We think that some septic patients become deficient in leptin and this leads to energy failure and subsequent organ dysfunction. Exploring the relationship between leptin, body energy regulation and the severity of critical illness will reveal whether leptin, or one of its downstream targets, could potentially be developed as a new therapy for septic patients with organ failure."
Professor Mervyn Singer’s lecture, “Are we Ignoring the Lessons of Waterloo at our (Patients’) Peril?” held today at 1pm at UCL, is part of a series of lunchtime lectures which are open to the general public.

For more information about UCL’s Lunch Hour Lectures, please visit http://www.ucl.ac.uk/registry/events/lhl/

Jenny Gimpel | alfa
Further information:
http://ww.ucl.ac.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>