Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pet scans detect brain differences in people at risk for Alzheimer’s

22.11.2004


Using brain imaging, researchers at Columbia University Medical Center (CUMC) have found clear differences in brain function between healthy people who carry a genetic risk factor for Alzheimer’s disease and those who lack the factor.



Because researchers believe that Alzheimer’s disease starts changing the brain years before any symptoms appear, the disease may be most amenable to treatment in these pre-clinical stages. If so, detecting the early changes will be crucial for future therapies.

People who carry the genetic risk factor, the å 4 allele of the Apolipoprotein (APOE) gene, have higher risk of developing the disease than non-carriers and usually show symptoms earlier. "It is possible that what we’re seeing in the APOE- å4 carriers are early changes in the brain caused by Alzheimer’s disease," says the study’s senior author, Yaakov Stern, Ph.D., of CUMC’s Taub Institute and Sergievsky Center.


But he and the study’s first author, Nikolaos Scarmeas, M.D., caution that more research is needed before it’s known for certain if the difference is an early sign of Alzheimer’s. "It’s also possible that the brain differences we see are related to the APOE gene but are not necessarily directly related to incipient Alzheimer’s," says Dr. Scarmeas, a neurologist in the Taub Institute, Sergievsky Center and neurology department. "Even so, the differences we’ve found may provide information on how the å4 allele predisposes carriers to Alzheimer’s disease."

The present study appears in the Nov.-Dec. 2004 issue of the American Journal of Geriatric Psychiatry.

About the Study

The researchers looked at six people who carried the APOE- å4 risk factor and 26 non-carriers. None of the 32 participants, mostly in their 60s and 70s, had any signs of dementia or memory deficits and the two groups could not be distinguished from one another by standard cognitive tests.

PET scans taken while the subjects were performing a memory task, however, showed clear differences between the two groups. As the participants tried to remember if they’d seen a particular shape before, one pattern of brain activation appeared in the APOE- å4 carriers while a different pattern appeared in the non-carriers.

Dr. Scarmeas says the difference may indicate that APOE- å4 carriers have to compensate for early damage done by Alzheimer’s by switching to an alternate brain network to complete the task. It could also be that their different genetic makeup results in different patterns of brain activity.

In previous studies, Dr Scarmeas has demonstrated APOE-related changes in brain activity in patients that already have Alzheimer’s disease and in healthy, young, college-age people. Drs Scarmeas, Stern and a large group of other researchers at the Taub Institute are using advanced brain imaging techniques to examine changes in cognition and brain function as a result of normal aging and brain diseases, such as Alzheimer’s disease.

Karen Zipern | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>