Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pet scans detect brain differences in people at risk for Alzheimer’s


Using brain imaging, researchers at Columbia University Medical Center (CUMC) have found clear differences in brain function between healthy people who carry a genetic risk factor for Alzheimer’s disease and those who lack the factor.

Because researchers believe that Alzheimer’s disease starts changing the brain years before any symptoms appear, the disease may be most amenable to treatment in these pre-clinical stages. If so, detecting the early changes will be crucial for future therapies.

People who carry the genetic risk factor, the å 4 allele of the Apolipoprotein (APOE) gene, have higher risk of developing the disease than non-carriers and usually show symptoms earlier. "It is possible that what we’re seeing in the APOE- å4 carriers are early changes in the brain caused by Alzheimer’s disease," says the study’s senior author, Yaakov Stern, Ph.D., of CUMC’s Taub Institute and Sergievsky Center.

But he and the study’s first author, Nikolaos Scarmeas, M.D., caution that more research is needed before it’s known for certain if the difference is an early sign of Alzheimer’s. "It’s also possible that the brain differences we see are related to the APOE gene but are not necessarily directly related to incipient Alzheimer’s," says Dr. Scarmeas, a neurologist in the Taub Institute, Sergievsky Center and neurology department. "Even so, the differences we’ve found may provide information on how the å4 allele predisposes carriers to Alzheimer’s disease."

The present study appears in the Nov.-Dec. 2004 issue of the American Journal of Geriatric Psychiatry.

About the Study

The researchers looked at six people who carried the APOE- å4 risk factor and 26 non-carriers. None of the 32 participants, mostly in their 60s and 70s, had any signs of dementia or memory deficits and the two groups could not be distinguished from one another by standard cognitive tests.

PET scans taken while the subjects were performing a memory task, however, showed clear differences between the two groups. As the participants tried to remember if they’d seen a particular shape before, one pattern of brain activation appeared in the APOE- å4 carriers while a different pattern appeared in the non-carriers.

Dr. Scarmeas says the difference may indicate that APOE- å4 carriers have to compensate for early damage done by Alzheimer’s by switching to an alternate brain network to complete the task. It could also be that their different genetic makeup results in different patterns of brain activity.

In previous studies, Dr Scarmeas has demonstrated APOE-related changes in brain activity in patients that already have Alzheimer’s disease and in healthy, young, college-age people. Drs Scarmeas, Stern and a large group of other researchers at the Taub Institute are using advanced brain imaging techniques to examine changes in cognition and brain function as a result of normal aging and brain diseases, such as Alzheimer’s disease.

Karen Zipern | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>