Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ’electronic eye’ for the blind

19.11.2004


An effective navigation system would improve the mobility of millions of blind people all over the world. A new "eye" developed by scientists in Japan will allow blind people to cross busy roads in total safety for the first time.



The "electronic eye", which would be mounted on a pair of glasses, will be capable of detecting the existence and location of a pedestrian crossing, and at the same time measure the width of the road to the nearest step and detect the colour of the traffic lights. This research appears today (19th November) in the journal Measurement Science and Technology published by the UK’s Institute of Physics.

Tadayoshi Shioyama and Mohammad Uddin, from the Kyoto Institute of Technology in Japan, have developed a system that is able to detect the existence of a pedestrian crossing in front of a blind person using a single camera. When combined with two other techniques the authors have produced, for measuring the width of the road and the colour of traffic lights, a single camera can now give the blind all the information they need to cross a road in safety.


Although some crossings make a sound when it is safe to cross, many do not. This issue has been tackled in the past. Adaptations have, for example, been made to the most common travel aid used by blind people, the white cane. There are some canes with added functions which use lasers or ultrasound to detect more distant obstacles. One such is the Talking Cane from Sten Lšfving Optical Sensors in Sweden. But this technology can’t give information about the location of a crossing, width of the road or the colour of the traffic lights.

Professor Shioyama said: "The camera would be mounted at eye level, and be connected to a tiny computer. It will relay information using a voice speech system and give vocal commands and information through a small speaker placed near the ear".

The device developed at Kyoto is the final product of a research programme that aimed to give blind people all the navigation information they needed to cross a road from a single small camera. Last year, the authors announced that they had designed a computer-aided camera that could measure the length of a crossing to within one step length - and simultaneously detect the colour of the traffic lights. Crucially, it couldn’t tell you where the crossing actually was until now.

Using images from a single camera, the device has a simple structure: unlike sophisticated stereo camera systems it does not need camera calibration. (The information is obtained using a ’camera coordinate system,’ so separate images do not need to be taken to calibrate the device). The length of a pedestrian crossing is measured by projective geometry: the camera makes an image of the white lines painted on the road, and then the actual distances are determined using the properties of geometric shapes as seen in the image. Experiments carried out by Shioyama and his colleagues showed that the crossing length could be measured to within an error of only 5 per cent of the full length - which is less than one step.

Shioyama and Uddin have now made a breakthrough in detecting the location of crossings in the first place and added this to their original camera. To do this they used a calculation called the "projective invariant" which takes the distance between the white lines (called the band width) and a set of linear points on the edges of the white lines, to give an accurate way of detecting what is or isn’t a crossing in a given image.

They used this technique to analyse 196 images and it proved successful in detecting whether there was a crossing present in 194 of them. In the two images where the system made a mistake, it said there wasn’t a crossing where there really was one.

Katherine Phipps, Accessible Environments spokesperson at the Royal National Institute of the Blind said: "Mobility is a serious issue for blind and partially sighted people and new tools like this that may help people with sight problems get around safely are always welcome".

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>