Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ’electronic eye’ for the blind

19.11.2004


An effective navigation system would improve the mobility of millions of blind people all over the world. A new "eye" developed by scientists in Japan will allow blind people to cross busy roads in total safety for the first time.



The "electronic eye", which would be mounted on a pair of glasses, will be capable of detecting the existence and location of a pedestrian crossing, and at the same time measure the width of the road to the nearest step and detect the colour of the traffic lights. This research appears today (19th November) in the journal Measurement Science and Technology published by the UK’s Institute of Physics.

Tadayoshi Shioyama and Mohammad Uddin, from the Kyoto Institute of Technology in Japan, have developed a system that is able to detect the existence of a pedestrian crossing in front of a blind person using a single camera. When combined with two other techniques the authors have produced, for measuring the width of the road and the colour of traffic lights, a single camera can now give the blind all the information they need to cross a road in safety.


Although some crossings make a sound when it is safe to cross, many do not. This issue has been tackled in the past. Adaptations have, for example, been made to the most common travel aid used by blind people, the white cane. There are some canes with added functions which use lasers or ultrasound to detect more distant obstacles. One such is the Talking Cane from Sten Lšfving Optical Sensors in Sweden. But this technology can’t give information about the location of a crossing, width of the road or the colour of the traffic lights.

Professor Shioyama said: "The camera would be mounted at eye level, and be connected to a tiny computer. It will relay information using a voice speech system and give vocal commands and information through a small speaker placed near the ear".

The device developed at Kyoto is the final product of a research programme that aimed to give blind people all the navigation information they needed to cross a road from a single small camera. Last year, the authors announced that they had designed a computer-aided camera that could measure the length of a crossing to within one step length - and simultaneously detect the colour of the traffic lights. Crucially, it couldn’t tell you where the crossing actually was until now.

Using images from a single camera, the device has a simple structure: unlike sophisticated stereo camera systems it does not need camera calibration. (The information is obtained using a ’camera coordinate system,’ so separate images do not need to be taken to calibrate the device). The length of a pedestrian crossing is measured by projective geometry: the camera makes an image of the white lines painted on the road, and then the actual distances are determined using the properties of geometric shapes as seen in the image. Experiments carried out by Shioyama and his colleagues showed that the crossing length could be measured to within an error of only 5 per cent of the full length - which is less than one step.

Shioyama and Uddin have now made a breakthrough in detecting the location of crossings in the first place and added this to their original camera. To do this they used a calculation called the "projective invariant" which takes the distance between the white lines (called the band width) and a set of linear points on the edges of the white lines, to give an accurate way of detecting what is or isn’t a crossing in a given image.

They used this technique to analyse 196 images and it proved successful in detecting whether there was a crossing present in 194 of them. In the two images where the system made a mistake, it said there wasn’t a crossing where there really was one.

Katherine Phipps, Accessible Environments spokesperson at the Royal National Institute of the Blind said: "Mobility is a serious issue for blind and partially sighted people and new tools like this that may help people with sight problems get around safely are always welcome".

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>