Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antipsychotic drugs stop fatal viral infection in brain cells

19.11.2004


Generic antipsychotic drugs can protect brain cells from a virus that causes a fatal nervous system disorder, according to research conducted at Brown University and Case Western Reserve University.



The disorder, called progressive multifocal leukoencephalopathy or PML, affects hundreds of Americans with suppressed immune systems, including kidney transplant recipients, cancer patients undergoing chemotherapy and an estimated 4 percent of people with AIDS.

PML is caused by the JC virus, which destroys the cells that produce the fatty sheath that covers nerve cells. This causes dementia, vision loss, movement and speech impairment, paralysis and coma. The disorder is fast moving and fatal; Many patients die within four months after onset. PML is also on the rise. Due to the AIDS pandemic, incidence of the disorder rose 20-fold in the United States between 1979 and 1994, according to a study conducted by federal researchers.


But a team of scientists, led by Brown virologist Walter Atwood, has found that a handful of antipsychotic drugs can prevent brain cells from becoming infected by the JC virus. The drugs may prove to be an effective, ready-made therapy for PML prevention or treatment. Their results are published in the current issue of Science. "This is very promising," Atwood said. "These are generic drugs we can take off the shelf that may help a lot of people." "It is likely that there are many other drugs with none of the potential side effects of antipsychotic drugs that will also block infection," said co-author Bryan Roth, professor of biochemistry at the Case School of Medicine and director of the National Institute of Mental Health’s Psychoactive Drug Screening Program.

Atwood, an associate professor of medical science in the Department of Molecular Microbiology and Immunology at Brown, has studied the JC virus for more than a decade. The virus is common – anywhere from 70 to 80 percent of adults carry it in a latent form – and it infects certain types of glial cells, which support and protect neurons. It travels to the brain in people with severely weakened immune systems. But scientists didn’t know precisely how it infects those cells. Atwood knew that cellular entry depended on a particular protein, called clathrin, and began to test compounds that would block it.

Atwood tried chlorprozamine, a drug used to control psychotic symptoms such as hallucinations and delusions, and found that it worked. But chlorprozamine can cause serious side effects, such as lowered blood pressure, stiffness and tremors, so Atwood and his team tested seven similar drugs. They found that three others, most notably the antipsychotic clozapine, also prevented infection in human glial cells without troubling side effects.

By pinpointing drugs that block the JC virus, researchers uncovered how the virus operates in the body. The JC virus attaches itself to a receptor on the surface of glial cells, called 5HT2AR, which normally binds with serotonin, a compound that plays an important role in depression and anxiety. That receptor, or cellular "gate," opens and allows the virus to get inside cells.

To be sure that 5HT2AR was the cellular receptor for the virus, Atwood’s team conducted a novel experiment. They took a line of cancer cells that lack 5HT2AR and inserted the receptor gene. They found that these re-engineered cells were now susceptible to infection from the JC virus. Then researchers used the antipsychotic drugs to see if they blocked the virus. They did.

By understanding that the JC virus can be stopped with clozapine and comparable serotonin receptor blocking drugs, Atwood and Roth said new avenues for PML therapy are now open. The antihistamine cyproheptadine, for example, could have the same effect on the virus. "Cyproheptadine has very high affinity for 5-HT2A receptors and is not likely to have many of the side effects associated with drugs like clozapine and chlorpromazine," Roth said.

Atwood is establishing collaborations with several clinical neurology centers to determine whether compounds such as cyproheptadine will, in fact, help prevent or treat PML. Atwood’s team at Brown included Gwendolyn Elphick, a research associate in the Department of Molecular Microbiology and Immunology; William Querbes, Joslynn Jordan, Sylvia Eash and Aisling Dugan, students in the graduate program in pathobiology; and Gretchen Gee, Kate Manley and Megan Stanifer, students in the graduate program in molecular biology, cell biology and biochemistry. Bryan Roth, Anushree Bhatnagar, and Wesley Kroeze from Case Western Reserve University Medical School collaborated with Atwood on the project.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>