Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beyond supervision


The ophthalmologist who pioneered customized LASIK surgery – supervision – now aims to further improve patients’ eyesight and minimize the risk of side effects. Patients should benefit from several recent discoveries, Scott MacRae, M.D., told an audience of eye doctors in a keynote address at the annual meeting of the American Academy of Ophthalmology last month.

The techniques appear crucial for minimizing unwanted side effects and allowing patients, most of whom now have vision of 20/16 or better, to enjoy the full effects of a type of enhanced vision that wasn’t even a twinkle in the eye of doctors 20 years ago. "We’re trying to improve upon something where people already come out and say, "Wow, I’ve never seen that well." We’re learning how to make an extremely effective surgery even better," says MacRae, professor of Ophthalmology and Visual Science at the University of Rochester Medical Center and medical director of Strong Vision.

The field of supervision or "customized ablation" had its genesis in laboratory work in the early 1990s at the University of Rochester, where a team led by David Williams discovered how to use a laser beam to take the best images ever of the inner eye in people, then used the new technology to discover dozens of defects – "higher-order aberrations" – in our vision that were previously unknown.

Around the same time, the popularity of refractive surgery, where surgeons use a laser beam to sculpt the cornea to improve vision, was beginning to take off. Williams’ research helped bring to Rochester MacRae, a pioneering refractive surgeon, and the two teamed up at the University of Rochester Eye Institute in an effort to improve eyesight to a degree previously unheard of.

Using Williams’ laboratory work as a road map to the intricacies of the inner eye, MacRae developed customized ablation, a custom version of refractive surgery that corrects for the previously unknown nuances of a person’s vision. In the earliest days of refractive surgery, doctors didn’t even know that "higher-order" aberrations existed; soon MacRae was one of the first in the world to fix these defects and turn out patients who said their vision had never been crisper. Since then MacRae has used Williams’ research to directly improve the vision of hundreds of patients: In the largest study, seven out of 10 patients saw their vision improve to 20/16 or better, and 97 percent said they had marked or extreme improvement. Because of the research the technique is now widely available and has been used to improve the eyesight of tens of thousands of patients worldwide. "This technology has revolutionized the way people see, and the way we think," says MacRae. "While fixing traits like near-sightedness and astigmatism are still the fundamentals, now we’re able to improve on problems that in the old days we didn’t even know existed."

In New Orleans MacRae discussed three recent findings by his team that boost vision quality even further:

  • Increasing the size of the surface of the eye being treated helps prevent a visual defect known as spherical aberration. Geunyoung Yoon, Ph.D., a colleague who works closely with MacRae, has untangled how the laser can affect spherical aberration, which can cause blurry vision and sometimes results in patients seeing halos around lights at night. The team found that increasing the area of the "treatment zone" on the eye reduces this side effect dramatically.
  • Precise positioning of the laser during surgery is vital to prevent a defect known as coma, which causes lights to appear fuzzy and can result in a sharp and annoying glare from lights at night. In a recent study, MacRae’s team got its best results when the tracking device used to position the laser was within 200 microns – about three times the width of a human hair – of the most desirable spot. Better tracking devices in recent years have helped physicians position the beam precisely, MacRae says, reducing in patients the amount of coma, whose effect on vision can rival that of a bad case of astigmatism.
  • Careful manipulation of the flap of the cornea that is cut during surgery is more crucial than was previously thought to achieve the best vision possible. MacRae has found that keeping the area dry during surgery helps prevent swelling that can make it difficult for a surgeon to bring the cornea back together meticulously.

Since the field is still emerging, it’s crucial for patients to choose their physician carefully, says MacRae, who has been honored nationally for his work and who is an author of the book Wavefront Customized Visual Correction: The Quest for Supervision II. While price is always a concern for consumers, MacRae says that sometimes a higher price covers costs that contribute to patient safety. For instance, a doctor like MacRae turns away significant business after investing hours with a patient because he discovers that many patients – around 20 percent – are not good candidates for refractive surgery and might have troublesome side effects. MacRae and other top doctors also use extensive, seemingly repetitive screening techniques to check traits such as the thickness of a person’s cornea, which is crucial to the surgery, as well as the characteristics of a patient’s pupil.

"The bottom line is that if you use state-of-the-art techniques and you choose your patients carefully, you should get outstanding results. While most of our patients are ecstatic with the results, the field is so young that there are constantly discoveries that should improve patients’ vision even more," says MacRae, who has helped train nearly 1,000 physicians around the country about refractive surgery.

Tom Rickey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>