Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond supervision

15.11.2004


The ophthalmologist who pioneered customized LASIK surgery – supervision – now aims to further improve patients’ eyesight and minimize the risk of side effects. Patients should benefit from several recent discoveries, Scott MacRae, M.D., told an audience of eye doctors in a keynote address at the annual meeting of the American Academy of Ophthalmology last month.

The techniques appear crucial for minimizing unwanted side effects and allowing patients, most of whom now have vision of 20/16 or better, to enjoy the full effects of a type of enhanced vision that wasn’t even a twinkle in the eye of doctors 20 years ago. "We’re trying to improve upon something where people already come out and say, "Wow, I’ve never seen that well." We’re learning how to make an extremely effective surgery even better," says MacRae, professor of Ophthalmology and Visual Science at the University of Rochester Medical Center and medical director of Strong Vision.

The field of supervision or "customized ablation" had its genesis in laboratory work in the early 1990s at the University of Rochester, where a team led by David Williams discovered how to use a laser beam to take the best images ever of the inner eye in people, then used the new technology to discover dozens of defects – "higher-order aberrations" – in our vision that were previously unknown.



Around the same time, the popularity of refractive surgery, where surgeons use a laser beam to sculpt the cornea to improve vision, was beginning to take off. Williams’ research helped bring to Rochester MacRae, a pioneering refractive surgeon, and the two teamed up at the University of Rochester Eye Institute in an effort to improve eyesight to a degree previously unheard of.

Using Williams’ laboratory work as a road map to the intricacies of the inner eye, MacRae developed customized ablation, a custom version of refractive surgery that corrects for the previously unknown nuances of a person’s vision. In the earliest days of refractive surgery, doctors didn’t even know that "higher-order" aberrations existed; soon MacRae was one of the first in the world to fix these defects and turn out patients who said their vision had never been crisper. Since then MacRae has used Williams’ research to directly improve the vision of hundreds of patients: In the largest study, seven out of 10 patients saw their vision improve to 20/16 or better, and 97 percent said they had marked or extreme improvement. Because of the research the technique is now widely available and has been used to improve the eyesight of tens of thousands of patients worldwide. "This technology has revolutionized the way people see, and the way we think," says MacRae. "While fixing traits like near-sightedness and astigmatism are still the fundamentals, now we’re able to improve on problems that in the old days we didn’t even know existed."

In New Orleans MacRae discussed three recent findings by his team that boost vision quality even further:

  • Increasing the size of the surface of the eye being treated helps prevent a visual defect known as spherical aberration. Geunyoung Yoon, Ph.D., a colleague who works closely with MacRae, has untangled how the laser can affect spherical aberration, which can cause blurry vision and sometimes results in patients seeing halos around lights at night. The team found that increasing the area of the "treatment zone" on the eye reduces this side effect dramatically.
  • Precise positioning of the laser during surgery is vital to prevent a defect known as coma, which causes lights to appear fuzzy and can result in a sharp and annoying glare from lights at night. In a recent study, MacRae’s team got its best results when the tracking device used to position the laser was within 200 microns – about three times the width of a human hair – of the most desirable spot. Better tracking devices in recent years have helped physicians position the beam precisely, MacRae says, reducing in patients the amount of coma, whose effect on vision can rival that of a bad case of astigmatism.
  • Careful manipulation of the flap of the cornea that is cut during surgery is more crucial than was previously thought to achieve the best vision possible. MacRae has found that keeping the area dry during surgery helps prevent swelling that can make it difficult for a surgeon to bring the cornea back together meticulously.

Since the field is still emerging, it’s crucial for patients to choose their physician carefully, says MacRae, who has been honored nationally for his work and who is an author of the book Wavefront Customized Visual Correction: The Quest for Supervision II. While price is always a concern for consumers, MacRae says that sometimes a higher price covers costs that contribute to patient safety. For instance, a doctor like MacRae turns away significant business after investing hours with a patient because he discovers that many patients – around 20 percent – are not good candidates for refractive surgery and might have troublesome side effects. MacRae and other top doctors also use extensive, seemingly repetitive screening techniques to check traits such as the thickness of a person’s cornea, which is crucial to the surgery, as well as the characteristics of a patient’s pupil.

"The bottom line is that if you use state-of-the-art techniques and you choose your patients carefully, you should get outstanding results. While most of our patients are ecstatic with the results, the field is so young that there are constantly discoveries that should improve patients’ vision even more," says MacRae, who has helped train nearly 1,000 physicians around the country about refractive surgery.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>