Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acetaminophen shows positive in vivo cardioprotective effects in heart attack, arrhythmia

12.11.2004


Infarct size reduced 60%+ by three different measures



Long an under-studied yet widely-used over-the-counter medication, acetaminophen over the last few years is becoming recognized for a range of potential therapeutic uses beyond headache and pain.

One promising area is cardiology, where researchers decided to test the "common wisdom" that acetaminophen had no potential in treating heart disease. This position has been popular in the medical community despite that fact that "there are no in vivo reports on acetaminophen efficacy during myocardial infarction," a team from Rutgers University notes in the November issue of the American Journal of Physiology-Heart and Circulatory Physiology.


The researchers tested the "gold standard" in the cardiovascular area: "what kind of cardioprotection a medical agent provides, specifically by measuring the infarct size" in a simulated heart attack, according to Gary F. Merrill, the lead author. The team found that acetaminophen significantly reduced the infarct size by 60% or more by three different key measurements in treated dogs, compared with a physiologically identical but untreated control group.

While the heart areas at risk were similar in the two groups, the actual infarct size of untreated animals was 22 grams plus or minus 3g versus 9g ± 2g in treated animals, or about a 60% reduction. Similarly, infarct size expressed as a percentage of the area at risk in untreated hearts was 35% ± 3% versus acetaminophen-treated dogs where it was 13% ± 2%, about a 63% reduction. And when the infarct size was expressed as a percentage of the entire myocardium, the difference in infarct size was equally significant: 8% ± 1% for untreated dogs versus 3% ± 1% for acetaminophen-treated dogs – a 62.5% decrease.

Other variables stable; acetaminophen anti-arrhythmic action observed

The researchers noted that the "absence of differences in ventricular function and in the general respiratory-metabolic status of the dogs suggests that statistically significant variability in myocardial infarction cannot be explain on the basis of ventricular mechanics, metabolism or respiration."

They said the results of the current study "extend our recent work in vitro to the in vivo arena and reveal salutary effects of acetaminophen in the neurohumorally intact, blood-perfused tissue environment of the canine myocardium. Results suggest that acetaminophen is among the most efficacious of the cardioprotective agents discovered to date."

The study, "Acetaminophen and myocardial infarction in dogs," was written by Gary F. Merrill, Tyler H. Rork, and Norell M. Spiler at the Department of Cell Biology and Neurosciences, Division of Life Sciences, Rutgers University, Piscataway, New Jersey, and Roseli Golfetti of the State University of Sao Paulo at Campinas, Brazil, who was at Rutgers during the research experiments.

Although studying arrhythmia wasn’t part of the protocol and thus wasn’t monitored rigorously, the authors note that "during both ischemia and reperfusion, acetaminophen-treated hearts appeared much more stable, electrically, than (control) hearts. For example, nonsustained ventricular tachycardia occurred regularly in (control) dogs during reperfusion but was less evident in the presence of acetaminophen." Specifically in four of the 10 control dogs "nonsustained tachycardia occurred regularly" during reperfusion, but was observed in only one of the treated dogs.

Caveats and next steps

Given the significance of their findings, the authors put forth this caution: "Metabolism of acetaminophen by dogs is different than in humans. Therefore, the results obtained at the doses used (30 mg/kg) might be only applicable to dogs and not to humans. More work is needed to reveal the potential salutary effects of this agent in other tissues and organ systems under other physiological and/or pathophysiological conditions."

For instance, Merrill said that "one of the disappointing findings in the current study was a follow up to earlier studies on guinea pig hearts where one of the most pronounced effects was mechanical; acetaminophen aided the left ventricle during reperfusion. But in dogs, acetaminophen only affected the necrotic part of the heart. In other words, acetaminophen had no net beneficial mechanical effects on a dog heart."

Merrill noted that study of acetaminophen continues to grow. For instance "as-yet-unpublished investigations are exploring the effects of acetaminophen on diet and vascular atherogenesis, spread of necrosis and apoptosis postmyocardial infarction, and procedurally induced myocardial infarction." And certainly "an investigation of the potential antiarrythmic qualities of acetaminophen, in an in vivo setting, should be conducted," they added.

Finally, the researchers pointed out that the current experiment directly administered acetaminophen at two intervals during the induced heart attack and that studying chronic, small-dose ingestion might yield useful findings.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>