Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 Protease Inhibitors: Effective Against Malaria?

09.11.2004


Protease inhibitors used to treat HIV-1 infection may also be effective for treatment or prevention of malaria, according to a study published in the December 1 issue of The Journal of Infectious Diseases, now available online. The study found protease inhibitors inhibited the growth of P. falciparum, the malaria parasite that causes most disease. These findings may also expose a previously unexplored vulnerability in the parasite that could lead to a new class of anti-malarial drug. While the effects of such drugs on co-infection need to be investigated, the study’s findings may be especially significant in sub-Saharan Africa and other areas of the developing world where there are high rates of HIV and malaria co-infection.



Scientists from the Queensland Institute of Medical Research tested the effects of the protease inhibitors saquinavir, ritonavir, nelfinavir, amprenavir, and indinavir, as well as the non-nucleoside reverse transcriptase inhibitor nevirapine, on a drug-resistant line of P. falciparum. Saquinavir, ritonavir, and indinavir all inhibited parasite growth in vitro at levels routinely achieved in human patients, with saquinavir and ritonavir showing the most potent effect on the parasite. Saquinavir was most effective in the study and was equally effective on chloroquine-sensitive and -resistant parasite lines, while nelfinavir and amprenavir did not demonstrate anti-malarial activity. The research builds on a previous study that demonstrated antiretroviral agents can reduce the adhesion of P. falciparum-infected erythrocytes to endothelial surfaces.

The authors believe that the antiretroviral protease inhibitors attack the malaria parasite in ways that current antimalarial treatments do not. While the mode of antimalarial action of the drugs was not uncovered in the study, the authors hypothesize that the antiretrovirals inhibit an aspartyl protease, which helps the parasite digest hemoglobin and is located on the food vacuole of the parasite. Further investigation may not only provide a better knowledge of how to treat co-infected patients with protease inhibitors, but could also lead to a new type of malaria drug that would target the parasite in novel ways.


The World Health Organization’s “3 by 5” program intends to treat three million HIV-infected people, primarily in the developing world, with antiretrovirals by the year 2005. The authors suggest that individuals treated under programs such as this may also gain an anti-parasitic benefit. At the same time, they acknowledge that their study does not address the concern that protease inhibitors may have immunological side effects that could hamper parasite removal.

The authors warn that the clinical application of their novel findings should be made with caution. They are currently carrying out further studies on the interactions of protease inhibitors and current antimalarial agents in order to optimize the drugs’ beneficial effects on both HIV and malaria infections.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>