Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HIV-1 Protease Inhibitors: Effective Against Malaria?


Protease inhibitors used to treat HIV-1 infection may also be effective for treatment or prevention of malaria, according to a study published in the December 1 issue of The Journal of Infectious Diseases, now available online. The study found protease inhibitors inhibited the growth of P. falciparum, the malaria parasite that causes most disease. These findings may also expose a previously unexplored vulnerability in the parasite that could lead to a new class of anti-malarial drug. While the effects of such drugs on co-infection need to be investigated, the study’s findings may be especially significant in sub-Saharan Africa and other areas of the developing world where there are high rates of HIV and malaria co-infection.

Scientists from the Queensland Institute of Medical Research tested the effects of the protease inhibitors saquinavir, ritonavir, nelfinavir, amprenavir, and indinavir, as well as the non-nucleoside reverse transcriptase inhibitor nevirapine, on a drug-resistant line of P. falciparum. Saquinavir, ritonavir, and indinavir all inhibited parasite growth in vitro at levels routinely achieved in human patients, with saquinavir and ritonavir showing the most potent effect on the parasite. Saquinavir was most effective in the study and was equally effective on chloroquine-sensitive and -resistant parasite lines, while nelfinavir and amprenavir did not demonstrate anti-malarial activity. The research builds on a previous study that demonstrated antiretroviral agents can reduce the adhesion of P. falciparum-infected erythrocytes to endothelial surfaces.

The authors believe that the antiretroviral protease inhibitors attack the malaria parasite in ways that current antimalarial treatments do not. While the mode of antimalarial action of the drugs was not uncovered in the study, the authors hypothesize that the antiretrovirals inhibit an aspartyl protease, which helps the parasite digest hemoglobin and is located on the food vacuole of the parasite. Further investigation may not only provide a better knowledge of how to treat co-infected patients with protease inhibitors, but could also lead to a new type of malaria drug that would target the parasite in novel ways.

The World Health Organization’s “3 by 5” program intends to treat three million HIV-infected people, primarily in the developing world, with antiretrovirals by the year 2005. The authors suggest that individuals treated under programs such as this may also gain an anti-parasitic benefit. At the same time, they acknowledge that their study does not address the concern that protease inhibitors may have immunological side effects that could hamper parasite removal.

The authors warn that the clinical application of their novel findings should be made with caution. They are currently carrying out further studies on the interactions of protease inhibitors and current antimalarial agents in order to optimize the drugs’ beneficial effects on both HIV and malaria infections.

Steve Baragona | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>