Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helicobacter pylori - the key behind its recognition is somewhere else

01.11.2004


The first step against infection is the detection of microorganisms capable of causing disease. This is done through the recognition of molecular structures not shared by the host, but also present in other harmless or even useful microbes. A question that has puzzled scientists for many years is how the host knows exactly against which microbes to mount an immune response. But now, in the November issue of Nature Immunology, scientists describe for the first time an ingenious bacteria-recognition mechanism by epithelial cells, which allows the distinction to be made between dangerous and innocuous bacteria.

The innate immune system is the mammals’ first line of defence as it can be mobilised almost immediately, and so has a crucial role in the prevention and/or fight of infection. Key players in the recognition of bacteria are two families of receptors: Toll-like receptors (TLR), which are normally expressed in cell membranes, and the nucleotide-binding oligomerization domain (Nod) family, found in the cytoplasm.

A simple system by which the innate immune system can differentiate between pathogenic (disease-inducing) and non-pathogenic bacteria is by selective expression of these receptors. For example, TLR and Nod receptors, specific for bacterial molecular components, are expressed in sterile areas of the body like the internal organs, the bloodstream or the cytoplasm. The logic behind this is that if bacteria are found at those locations it would be as result of an infection and consequently an immune response should be mounted. This differential receptor expression however, can not explain how in places like the digestive system, where a varied population of both pathogenic and non-pathogenic extracellular bacteria exist, we are still able to discriminate and attack only the those which can induce disease.



But now Jérôme Viala , Catherine Chaput, Ivo G. Boneca, Richard L. Ferrero and colleagues at the Institute Pasteur in Paris, the National University of Ireland and the Millenium Pharmaceuticals in Cambridge, Massachusetts, USA while working on the mechanism of recognition by epithelial cells of a pathogenic variant of Helicobacter pylori (H. pylori) which is associated with ulcers and stomach cancer, found one such mechanism of discrimination between “good” and “bad” bacteria.

The team of scientist discovered that the inflammatory reaction of epithelial cells in response to H. pylori was triggered through Nod1, a member of the Nod receptor family, localised in the cytoplasm of the epithelial cells. This was very interesting, as H. pylori does not enter the cells during infection and until now was thought to be recognised through a member of the TLR family, which are normally localised on the cell surface.

In addition, Viala , Ferrero and colleagues also show that the activation of Nod1 and subsequent inflammatory response against infection, was dependent of a bacterial syringe-like structure called type IV secretion system.

Further experiments led to the discovery that H. pylori induces an inflammatory response in gastric epithelial cells by injecting peptidoglycan, a component of the bacterial cell wall, into these cells through a type IV secretion system. The peptidoglycan is then recognised in the cytoplasm by Nod1 leading to the production of pro-inflammatory molecules, which will start an immune response against the pathogenic bacteria. It is not clear why bacteria have conserved such a mechanism if, as it seems, it can be harmful for their survival but one hypothesis is that it might have advantages not yet discovered.

These results are extremely interesting when considering the fact that while most pathogenic bacteria present this type of syringe-like secretion systems, non-pathogenic bacteria, on the other hand, generally do not have such systems of interaction. A good example is non-pathogenic variants of H. pylori which have no secretion system.

Viala , Ferrero and colleagues’s work is very important for the understanding of how the body deals with infection not only because it shows that an intracellular receptor (Nod1) can recognise an extracellular bacterium without this entering the cytoplasm, but also because it describes for the first time a bacterial recognition system that is able to discriminate between dangerous and innocuous microorganisms and mount a response only when necessary.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.nature.com
http://www.oces.mcies.pt

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>