Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified parasite lets researchers probe immune system’s memory

21.10.2004


Researchers at Washington University School of Medicine in St. Louis and the University of Pennsylvania have found an immune system cell can "remember" a parasite’s attack and help the body mount a more effective defense against subsequent invasions by the same parasite.



The finding, published in the October issue of Nature Medicine, will likely aid efforts to develop a vaccine for Leishmania major, a parasite that infects approximately 12 million people worldwide, causing significant death and disfigurement. It may also help efforts to develop vaccines for other pathogens including AIDS and tuberculosis.

Scientists have known that successful recovery from Leishmania infection immunizes humans and animals against subsequent infection. But previous experiments led researchers to suspect that this immunity resulted from the presence of a very small population of parasites that remained in the host even after full recovery. Loss of this minimal parasite remnant seemed in some studies to result in loss of immunity.


For the new study, immunologists at the University of Pennsylvania infected mice with a genetically modified form of Leishmania created by microbiologists at Washington University School of Medicine. The modified Leishmania lacks an enzyme required for DNA synthesis and can be completely wiped out by the mouse immune system.

Researchers found that after the mice had cleared the Leishmania parasite, a type of T cell -- the CD4+ central memory T cell -- still reacted to the parasite in the test tube. Mice who never had Leishmania and were given injections of these T cells fought off the parasite more effectively than mice that didn’t get the T cells. "This partial immunization suggests that we may need to look at generating large populations of these memory T cells at the time of vaccination," says study coauthor Stephen Beverley, Ph.D., the Marvin A. Brennecke Professor and head of the Department of Molecular Microbiology.

Researchers also found evidence that another class of T cells may stay primed to fight a new infection when a small remnant population of parasites persists. Beverley speculates that the presence of this second type of T cell, along with the central memory T cell, may be key to providing full protection.

Senior investigator Phillip Scott, Ph.D., professor of microbiology and immunology at the School of Veterinary Medicine at the University of Pennsylvania, has conducted additional experiments that showed central memory T cells can maintain their "memory" of Leishmania and respond to new infections at least 5 months after initial infection.

Because T cells orchestrate the immune system’s fight against other diseases, including tuberculosis and AIDS, scientists believe the new insights will be help efforts to develop other vaccines. "We are so much better at understanding how the immune system responds than we are at making a vaccine," Beverley notes. "These new results may help us better direct the immune response toward long-term vaccination."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>