Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified parasite lets researchers probe immune system’s memory

21.10.2004


Researchers at Washington University School of Medicine in St. Louis and the University of Pennsylvania have found an immune system cell can "remember" a parasite’s attack and help the body mount a more effective defense against subsequent invasions by the same parasite.



The finding, published in the October issue of Nature Medicine, will likely aid efforts to develop a vaccine for Leishmania major, a parasite that infects approximately 12 million people worldwide, causing significant death and disfigurement. It may also help efforts to develop vaccines for other pathogens including AIDS and tuberculosis.

Scientists have known that successful recovery from Leishmania infection immunizes humans and animals against subsequent infection. But previous experiments led researchers to suspect that this immunity resulted from the presence of a very small population of parasites that remained in the host even after full recovery. Loss of this minimal parasite remnant seemed in some studies to result in loss of immunity.


For the new study, immunologists at the University of Pennsylvania infected mice with a genetically modified form of Leishmania created by microbiologists at Washington University School of Medicine. The modified Leishmania lacks an enzyme required for DNA synthesis and can be completely wiped out by the mouse immune system.

Researchers found that after the mice had cleared the Leishmania parasite, a type of T cell -- the CD4+ central memory T cell -- still reacted to the parasite in the test tube. Mice who never had Leishmania and were given injections of these T cells fought off the parasite more effectively than mice that didn’t get the T cells. "This partial immunization suggests that we may need to look at generating large populations of these memory T cells at the time of vaccination," says study coauthor Stephen Beverley, Ph.D., the Marvin A. Brennecke Professor and head of the Department of Molecular Microbiology.

Researchers also found evidence that another class of T cells may stay primed to fight a new infection when a small remnant population of parasites persists. Beverley speculates that the presence of this second type of T cell, along with the central memory T cell, may be key to providing full protection.

Senior investigator Phillip Scott, Ph.D., professor of microbiology and immunology at the School of Veterinary Medicine at the University of Pennsylvania, has conducted additional experiments that showed central memory T cells can maintain their "memory" of Leishmania and respond to new infections at least 5 months after initial infection.

Because T cells orchestrate the immune system’s fight against other diseases, including tuberculosis and AIDS, scientists believe the new insights will be help efforts to develop other vaccines. "We are so much better at understanding how the immune system responds than we are at making a vaccine," Beverley notes. "These new results may help us better direct the immune response toward long-term vaccination."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>