Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long road to a promising malaria vaccine started at NYU School of Medicine

18.10.2004


The malaria vaccine reported today to reduce life-threatening cases of the parasitic disease among children in Mozambique is based on the pioneering research of Drs. Ruth and Victor Nussenzweig and their colleagues at NYU School of Medicine.



Ruth Nussenzweig, Doc en Med, Ph.D., the C.V. Starr Professor of Medical and Molecular Parasitology, and her husband, Victor Nussenzweig, M.D., Ph.D., the Hermann M. Biggs Professor of Preventive Medicine, have devoted decades of research to preventing one of the world’s biggest killers. Malaria afflicts hundreds of millions of people, causing up to 3 million deaths every year, mostly in sub-Saharan Africa. Many of its victims are young children.

In a study reported today of more than 2,000 children in Mozambique, the vaccine reduced life-threatening attacks of malaria by 58 percent, and reduced milder forms of the disease by 30 percent. The study is published in the October 16, 2004, issue of The Lancet, a medical journal. "This is really fantastic news," says Dr. Victor Nussenzweig. "It is the first time that a vaccine has been shown to protect against severe malaria, which is a major cause of death in children in Africa. It is not yet an ideal vaccine because it is expensive, requires three doses, and it isn’t known yet how durable the vaccine’s protection will be, but it is a very big step forward."


The vaccine, designated RTS.S/AS02A, contains a large portion of a protein called circumsporozoite (CS) protein, which coats malaria parasites that invade the liver. This protein, which the Nussenzweigs first isolated from parasites in 1980, is the basis for some 15 malaria vaccines that now are in clinical trials or in pre-clinical testing. The vaccine, developed by GlaxoSmithKline in collaboration with the Walter Reed Army Institute of Research, contains a large portion of the CS protein fused with a part of another protein found on the hepatitis B virus, combined with substances that enhance the immune response.

The Nussenzweigs and their NYU colleagues were the first investigators to show that it was possible to generate an immune response against the CS protein, which occurs in all of the various species of the parasite called Plasmodium causing malaria. They found that the CS protein coats the parasite when it is in the salivary glands of the Anopheles mosquito. At that stage it is a crescent-shaped and called sporozoite, a stage in the complex life cycle of the parasite before it invades the human liver and causes devastating illness. The CS protein has been an important focus of the Nussenzweigs’ work ever since Dr. Ruth Nussenzweig first showed in 1967 that it was possible to prevent malaria infection by immunizing mice with irradiated parasites. At the time, scientists didn’t think it was possible to prevent malaria by eliciting an immune-based response.

In the early 1980s, the Nussenzweigs showed that the CS protein could generate antibodies against malaria parasites, a hallmark of an immune response. Later work--in collaboration with Elizabeth Nardin, Ph.D., and Fidel Zavala, M.D., both professors in medical and molecular parasitology at NYU--led to the development of simple immunological assays that could identify mosquitoes carrying the parasite. This marked an important advance because previously scientists could only identify infected mosquitoes under a microscope, a painstaking process, and the species of Plasmodium could not be ascertained.

In 1983 the Nussenzweigs, in collaboration with Nigel Godson, Ph.D., D.Sc., Professor of Biochemistry, and cloned the gene encoding the CS protein of a monkey malaria parasite, and later they cloned the gene for the human malarial parasite Plasmodium falciparum. Further work in the 1980s led to the discovery that antibodies against CS protein could destroy the ability of malarial sporozoites to invade the liver.

The NYU investigators later found that certain subunits of the CS protein were as effective as the whole in evoking a response. This work provided the experimental basis for clinical trials of the first semi-synthetic malaria vaccine in 1987. This vaccine was developed by the Nussenzweigs in collaboration with scientists at Hoffmann-LaRoche. It was the first vaccine to show that the CS protein could protect humans against malaria.

Pamela McDonnell | EurekAlert!
Further information:
http://www.med.nyu.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>