Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long road to a promising malaria vaccine started at NYU School of Medicine

18.10.2004


The malaria vaccine reported today to reduce life-threatening cases of the parasitic disease among children in Mozambique is based on the pioneering research of Drs. Ruth and Victor Nussenzweig and their colleagues at NYU School of Medicine.



Ruth Nussenzweig, Doc en Med, Ph.D., the C.V. Starr Professor of Medical and Molecular Parasitology, and her husband, Victor Nussenzweig, M.D., Ph.D., the Hermann M. Biggs Professor of Preventive Medicine, have devoted decades of research to preventing one of the world’s biggest killers. Malaria afflicts hundreds of millions of people, causing up to 3 million deaths every year, mostly in sub-Saharan Africa. Many of its victims are young children.

In a study reported today of more than 2,000 children in Mozambique, the vaccine reduced life-threatening attacks of malaria by 58 percent, and reduced milder forms of the disease by 30 percent. The study is published in the October 16, 2004, issue of The Lancet, a medical journal. "This is really fantastic news," says Dr. Victor Nussenzweig. "It is the first time that a vaccine has been shown to protect against severe malaria, which is a major cause of death in children in Africa. It is not yet an ideal vaccine because it is expensive, requires three doses, and it isn’t known yet how durable the vaccine’s protection will be, but it is a very big step forward."


The vaccine, designated RTS.S/AS02A, contains a large portion of a protein called circumsporozoite (CS) protein, which coats malaria parasites that invade the liver. This protein, which the Nussenzweigs first isolated from parasites in 1980, is the basis for some 15 malaria vaccines that now are in clinical trials or in pre-clinical testing. The vaccine, developed by GlaxoSmithKline in collaboration with the Walter Reed Army Institute of Research, contains a large portion of the CS protein fused with a part of another protein found on the hepatitis B virus, combined with substances that enhance the immune response.

The Nussenzweigs and their NYU colleagues were the first investigators to show that it was possible to generate an immune response against the CS protein, which occurs in all of the various species of the parasite called Plasmodium causing malaria. They found that the CS protein coats the parasite when it is in the salivary glands of the Anopheles mosquito. At that stage it is a crescent-shaped and called sporozoite, a stage in the complex life cycle of the parasite before it invades the human liver and causes devastating illness. The CS protein has been an important focus of the Nussenzweigs’ work ever since Dr. Ruth Nussenzweig first showed in 1967 that it was possible to prevent malaria infection by immunizing mice with irradiated parasites. At the time, scientists didn’t think it was possible to prevent malaria by eliciting an immune-based response.

In the early 1980s, the Nussenzweigs showed that the CS protein could generate antibodies against malaria parasites, a hallmark of an immune response. Later work--in collaboration with Elizabeth Nardin, Ph.D., and Fidel Zavala, M.D., both professors in medical and molecular parasitology at NYU--led to the development of simple immunological assays that could identify mosquitoes carrying the parasite. This marked an important advance because previously scientists could only identify infected mosquitoes under a microscope, a painstaking process, and the species of Plasmodium could not be ascertained.

In 1983 the Nussenzweigs, in collaboration with Nigel Godson, Ph.D., D.Sc., Professor of Biochemistry, and cloned the gene encoding the CS protein of a monkey malaria parasite, and later they cloned the gene for the human malarial parasite Plasmodium falciparum. Further work in the 1980s led to the discovery that antibodies against CS protein could destroy the ability of malarial sporozoites to invade the liver.

The NYU investigators later found that certain subunits of the CS protein were as effective as the whole in evoking a response. This work provided the experimental basis for clinical trials of the first semi-synthetic malaria vaccine in 1987. This vaccine was developed by the Nussenzweigs in collaboration with scientists at Hoffmann-LaRoche. It was the first vaccine to show that the CS protein could protect humans against malaria.

Pamela McDonnell | EurekAlert!
Further information:
http://www.med.nyu.edu

More articles from Health and Medicine:

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>