Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new imaging technology precisely tracks lung tumor motion

05.10.2004


According to a study presented today by a University of Pittsburgh researcher at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta, a new imaging technology may more precisely track tumor movement for patients under treatment for lung cancer than conventional 3D imaging. Results presented indicate that the new technology, 4D CT, or four-dimensional computed tomography, may allow radiation oncologists to determine and predict tumor movement based on the tumor’s location in near real time.

"One of the major challenges in treating lung tumors with radiation is precisely targeting a moving tumor while simultaneously decreasing the amount of healthy tissue that may be exposed," said Dwight Heron, M.D., assistant professor of radiation oncology, University of Pittsburgh School of Medicine and vice chairman of radiation oncology, University of Pittsburgh Medical Center (UPMC) and study co-author. "Lung tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor. By being able to predict tumor movement based on its location and attachment to the lung, we have the ability to more precisely target tumors with radiation therapy."
In the study, lung tumor motion was measured in 12 patients based on multiple images provided by 4D CT. Images were then sorted according to the phase of the respiratory cycle in which the image was acquired. Findings indicated that tumor motion correlated significantly with the position of the tumor on the lungs – tumors that moved more than 5 mm were located in the lower lobes of the lungs and those that moved the most were attached to the posterior, or back, of the lungs. Findings also indicated that tumors that were extensively attached to the chest wall or major airway moved the least.


"This technology is promising because it may improve our ability to develop more precise treatment plans for the delivery of radiation therapy to lung cancer patients and ensure the tumor receives the full amount of the treatment dose possible," said Dr. Heron. The technology was developed by GE Medical Systems. "The better we understand lung tumor motion, the better radiation oncologists can plan radiotherapy treatments and track changes in lung tumors that might affect the efficacy of the treatment," said Edward Brandner, Ph.D., medical physicist at UPMC and co-author of the study.

The study’s co-authors included Edward Brandner, Ph.D.; Andrew Wu, Ph.D.; Hungcheng Chen, M.S.; and Steven Burton, M.D., department of radiation oncology at the University of Pittsburgh; and Shalom Kalnicki, M.D., now of the department of radiation oncology, Montefiore Medical Center, New York.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>