Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new imaging technology precisely tracks lung tumor motion

05.10.2004


According to a study presented today by a University of Pittsburgh researcher at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta, a new imaging technology may more precisely track tumor movement for patients under treatment for lung cancer than conventional 3D imaging. Results presented indicate that the new technology, 4D CT, or four-dimensional computed tomography, may allow radiation oncologists to determine and predict tumor movement based on the tumor’s location in near real time.

"One of the major challenges in treating lung tumors with radiation is precisely targeting a moving tumor while simultaneously decreasing the amount of healthy tissue that may be exposed," said Dwight Heron, M.D., assistant professor of radiation oncology, University of Pittsburgh School of Medicine and vice chairman of radiation oncology, University of Pittsburgh Medical Center (UPMC) and study co-author. "Lung tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor. By being able to predict tumor movement based on its location and attachment to the lung, we have the ability to more precisely target tumors with radiation therapy."
In the study, lung tumor motion was measured in 12 patients based on multiple images provided by 4D CT. Images were then sorted according to the phase of the respiratory cycle in which the image was acquired. Findings indicated that tumor motion correlated significantly with the position of the tumor on the lungs – tumors that moved more than 5 mm were located in the lower lobes of the lungs and those that moved the most were attached to the posterior, or back, of the lungs. Findings also indicated that tumors that were extensively attached to the chest wall or major airway moved the least.


"This technology is promising because it may improve our ability to develop more precise treatment plans for the delivery of radiation therapy to lung cancer patients and ensure the tumor receives the full amount of the treatment dose possible," said Dr. Heron. The technology was developed by GE Medical Systems. "The better we understand lung tumor motion, the better radiation oncologists can plan radiotherapy treatments and track changes in lung tumors that might affect the efficacy of the treatment," said Edward Brandner, Ph.D., medical physicist at UPMC and co-author of the study.

The study’s co-authors included Edward Brandner, Ph.D.; Andrew Wu, Ph.D.; Hungcheng Chen, M.S.; and Steven Burton, M.D., department of radiation oncology at the University of Pittsburgh; and Shalom Kalnicki, M.D., now of the department of radiation oncology, Montefiore Medical Center, New York.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>