Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new imaging technology precisely tracks lung tumor motion

05.10.2004


According to a study presented today by a University of Pittsburgh researcher at the 46th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Atlanta, a new imaging technology may more precisely track tumor movement for patients under treatment for lung cancer than conventional 3D imaging. Results presented indicate that the new technology, 4D CT, or four-dimensional computed tomography, may allow radiation oncologists to determine and predict tumor movement based on the tumor’s location in near real time.

"One of the major challenges in treating lung tumors with radiation is precisely targeting a moving tumor while simultaneously decreasing the amount of healthy tissue that may be exposed," said Dwight Heron, M.D., assistant professor of radiation oncology, University of Pittsburgh School of Medicine and vice chairman of radiation oncology, University of Pittsburgh Medical Center (UPMC) and study co-author. "Lung tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor. By being able to predict tumor movement based on its location and attachment to the lung, we have the ability to more precisely target tumors with radiation therapy."
In the study, lung tumor motion was measured in 12 patients based on multiple images provided by 4D CT. Images were then sorted according to the phase of the respiratory cycle in which the image was acquired. Findings indicated that tumor motion correlated significantly with the position of the tumor on the lungs – tumors that moved more than 5 mm were located in the lower lobes of the lungs and those that moved the most were attached to the posterior, or back, of the lungs. Findings also indicated that tumors that were extensively attached to the chest wall or major airway moved the least.


"This technology is promising because it may improve our ability to develop more precise treatment plans for the delivery of radiation therapy to lung cancer patients and ensure the tumor receives the full amount of the treatment dose possible," said Dr. Heron. The technology was developed by GE Medical Systems. "The better we understand lung tumor motion, the better radiation oncologists can plan radiotherapy treatments and track changes in lung tumors that might affect the efficacy of the treatment," said Edward Brandner, Ph.D., medical physicist at UPMC and co-author of the study.

The study’s co-authors included Edward Brandner, Ph.D.; Andrew Wu, Ph.D.; Hungcheng Chen, M.S.; and Steven Burton, M.D., department of radiation oncology at the University of Pittsburgh; and Shalom Kalnicki, M.D., now of the department of radiation oncology, Montefiore Medical Center, New York.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>