Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulating the production of utrophin protects muscular dystrophy mice from muscle wasting

21.09.2004


Stimulating the production of utrophin with heregulin improves the quality of muscle tissue in mdx mice (right). Credit: Tejvir S. Khuranal/Proceedings of the National Academy of Sciences.


Researchers at the University of Pennsylvania School of Medicine report a novel strategy for stimulating the production of utrophin – an important muscle protein in young mice – for muscular dystrophy therapy. The investigators gave mdx mice (the mouse model for Duchenne’s muscular dystrophy) heregulin, a small molecule to turn on the production of utrophin in their muscles. Utrophin improved muscle function in the mdx mice. "Our strategy boosts the levels of an existing gene using pre-existing cellular machinery rather than having to deliver a gene via gene therapy," says lead author Tejvir S. Khurana, MD, PhD, Assistant Professor of Physiology & Member of the Pennsylvania Muscle Institute.

They detected an approximately threefold increase of utrophin levels over control mdx mice. "This is the level at which one starts seeing a therapeutic affect, as measured in lab tests with mouse muscles," says Khurana. The researchers noted an improvement in the quality of mouse muscle tissue, the biomechanical properties of muscles, and biochemical indices of dystrophy in the muscles.

In patients with Duchenne’s muscular dystrophy (DMD), the gene to make the protein dystrophin is missing, which results in the muscle wasting that is associated with the disease. The progressive muscle wasting begins in early childhood and typically leads to death in the twenties. "The gene for utrophin is already in the body, so by giving a small peptide to stimulate its production, we’re bypassing the need for dystrophin by cranking up the levels of utrophin," explains Khurana. This research appears in the September 21 issue of the Proceedings of the National Academy of Sciences.



Utrophin (also called dystrophin-related protein) is found on chromosome 6 and functions much the same as dystrophin, which is found on the X chromosome. However, utrophin is made in large amounts in fetal muscles, after which dystrophin takes over throughout adult life as one of the main muscle-membrane-associated proteins. "This approach reawakens the body to make utrophin again," says Khurana. "And it doesn’t preclude possible gene-therapy treatments for muscular dystrophy. Utrophin enrichment is a parallel strategy with great potential of being used in combination with other approaches."

Despite these advances in an animal model of DMD, Khurana sounds a cautionary note for near-term clinical applications: "There are a number of good reasons for parents not to start thinking of giving their children heregulin at present; for one, we don’t know anything about its potential toxicity or side effects." He stresses that this approach needs to first be properly tested in controlled trials to measure its possible long-term toxicity and efficacy in mdx mice, and then in additional animal-model studies.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>