Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Use of Mitomycin C to Lessen Unsightly Scarring Questioned


Using an animal model, investigators find that Mitomycin C, a common chemotherapy agent, offers limited benefit in reducing keloid or hypertrophic scars.

The tendency for extreme scarring is one reason many African Americans avoid plastic surgery and other surgical incisions. Though surgeons continue to develop less invasive techniques that minimize scarring, other options are needed to help these individuals who are prone to developing keloid scars.

Keloid scars are caused by an overproduction of fibroblasts, the structure on which cells build tissue to heal a wound. The fibroblasts continue to multiply after the wound is filled in and become a raised scar that grows beyond the original wound or point of incision. Dark skinned individuals tend to form keloids more readily than lighter skinned individuals. Hypertrophic scars are more common and occur in all racial groups. They appear raised but stay within the confines of the initial wound or point of incision. Both types of scars can occur through skin injuries such as surgical incisions, traumatic wounds, vaccination sites, burns, chickenpox, acne, or even minor scratches.

Mitomycin C (MMC) is a common chemotherapy agent that inhibits cell growth. It is also known to decrease the proliferation of fibroblasts, an essential element in the development of scar tissue. If too many fibroblasts are produced, a keloid of hypertrophic scar is produced.

Researchers set out to determine if the use of Mitomycin C can reduce keloid or hypertrophic scarring. To do this, they used an animal model that most closely parallels normal wound healing in humans. Clinical observations were used to assess the effect of topical and intradermal MMC on wound healing while evaluating for the presence of the protein, TGF-B1, to determine how MMC works to decrease fibroblast proliferation and scarring.

The authors of the study, “The Effects of Intradermal and Topical Mitomycin C on Wound Healing,” are Glen T. Porter, MD, and Swarupa Gadre, MD, of the University of Texas Medical Branch in Galveston, TX, and Karen Calhoun, MD Chair of University of Missouri Medical School. Their findings are being presented at the American Academy of Otolaryngology-Head and Neck Surgery Foundation Annual Meeting & OTO EXPO, being held September 19-22, 2004, at the Jacob K. Javits Convention Center, New York City, NY.

Methodology: Twenty-four adult male Sprague-Dawley rats (375-400g) were anesthetized and two incisions were placed on the back. Wound treatment was then administered according to randomization to one of the three study groups: injected MMC group, received intradermal injection with 1.0 ml of Mitomycin C (0.5mg/ml) into each wound; topical MMC group, received a four minute application of topical MMC (0.5mg/ml); saline group, received topical or intradermal saline in a similar manner. After treatment each wound was irrigated and closed with sterile staples. Two animals in each study arm were sacrificed at one and two weeks and one and six months after surgery. The wounds were then visually inspected and then a small sample was excised. Each wound was then serially sectioned. One section was sent for microscopic examination (blinded) with H&E staining and TGF-B1-specific immunohistochemical staining. Using a tensiometer, the remaining wound sections were tested to evaluate the force necessary to cause wound dehiscence (unblinded).

Results were evaluated using the SPSS software. Kruskal-Wallis and Mann-Whitney tests were used for statistical comparison. Study animals were treated in accordance to federal and state-mandated standards.

Results: Wound evaluation at the time of harvest showed an 88 percent (7/8) incidence of skin necrosis in the intradermal MMC group. Frank necrosis was noted in the wounds harvested at one and two weeks. Wounds harvested at one and six months showed corresponding areas of scarring consistent with areas of healing by secondary intention. No skin necrosis was noted in topical MMC and control animals. Wounds treated with topical MMC had poorer wound integrity compared with controls at one week (p<.001), two weeks (p<.001), one month (p<.001) and six months (p<.001). When compared to controls this represents a 3-4-fold decrease in wound strength at each time period. Intradermal MMC showed poorer wound integrity at two weeks (p<.001), one month (p<.001), and six months (p<.001) when compared with controls. Again, this represented at least a 3-fold decrease for the latter three time periods. There was a significant difference in wound strength when comparing topical and intradermal MMC only at the first week (p<.001) with injected wounds being weaker.

Blinded evaluation of H&E and immunohistochemical staining of wound sections showed no consistently identifiable difference between wounds in the three treatment groups. TGF-?1 was not consistently identified in any group.

Conclusions: The results of this study indicate that the application of MMC, whether topical or injected, will result in decreased wound strength which is still significantly different at six months after wounding. Intradermal injection appears to have no more affect on wound strength than topical, but carries an increased risk of skin necrosis. No consistently identifiable changes in histology or TGF-B1 expression was noted, which does not mean that TGF-B1 is not involved, only that the instrument of detection did not pick it up as the protein may not be present in quantities large enough to detect with immunohistochemical staining. This data suggests cautious use of MMC in clinical situations where wound breaking strength is critical. Intradermal MMC should be avoided as skin necrosis and scarring may result. Further study in humans is necessary to determine the effect of MMC on keloid and hypertrphic scars.

| newswise
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>