Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term effects of carbon monoxide poisoning are an autoimmune reaction

06.09.2004


Study has implications for prevention of brain damage after exposure



Later this fall, emergency-medicine physicians enter into what they call the "CO season" – a time when faulty furnaces and other mechanical mishaps lead to a spike in cases of carbon monoxide (CO) poisoning. CO poisoning is the leading cause of injury and death by poisoning worldwide, with about 40,000 people treated in the U.S. annually. Brain damage occurs – days to weeks later – in half of the patients with a serious case of CO poisoning.

The physiological causes of this delayed decline were not well understood until now. A team led by Stephen R. Thom, MD, PhD, Professor of Emergency Medicine and Chief of Hyperbaric Medicine, at the University of Pennsylvania School of Medicine, report this week online in the Proceedings of the National Academies of Sciences, that CO causes profound changes in myelin basic protein (MBP) – a major protein constituent of myelin, the protective sheath surrounding neurons. Using an animal model, they showed that the CO-induced changes in MBP set into motion an autoimmune response in which lymphocytes, triggered to eliminate altered MBP, continue to attack normal MBP.


Specifically, the researchers found that by-products of CO metabolism in the brain alter the charge and structure of MBP. "These changes in MBP have also been demonstrated in multiple sclerosis, which is why we paralleled the study along those lines," says Thom.

To link acute CO poisoning to long-term brain injury, the team conducted tests on normal versus CO-poisoned rats, comparing their abilities to navigate and memorize a maze. "CO poisoned rats don’t learn," said Thom. "But if you render their immune systems tolerant to altered MBP, by feeding them normal MBP before CO poisoning and thereby short-circuiting the lymphocyte response, the rats learn normally."

Thom says that overall this work suggests that the 50 percent or more of patients who develop brain damage following severe CO poisoning may do so, in large part, due to an autoimmune reaction. The body simply does not know when to stop attacking what it now views as an invader. "This opens up a lot of possibilities, such as treatment with immunosuppressant agents, in conjunction with standard hyperbaric oxygen therapy," he says. "Until our study elucidated this immune response, we had no motivation to think along those lines."

Penn colleagues on the paper are: Veena M. Bhopale, Donald Fisher, Jie Zhang, and Phyllis Gimotty. This study was funded by the National Institutes of Health.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>