Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term effects of carbon monoxide poisoning are an autoimmune reaction

06.09.2004


Study has implications for prevention of brain damage after exposure



Later this fall, emergency-medicine physicians enter into what they call the "CO season" – a time when faulty furnaces and other mechanical mishaps lead to a spike in cases of carbon monoxide (CO) poisoning. CO poisoning is the leading cause of injury and death by poisoning worldwide, with about 40,000 people treated in the U.S. annually. Brain damage occurs – days to weeks later – in half of the patients with a serious case of CO poisoning.

The physiological causes of this delayed decline were not well understood until now. A team led by Stephen R. Thom, MD, PhD, Professor of Emergency Medicine and Chief of Hyperbaric Medicine, at the University of Pennsylvania School of Medicine, report this week online in the Proceedings of the National Academies of Sciences, that CO causes profound changes in myelin basic protein (MBP) – a major protein constituent of myelin, the protective sheath surrounding neurons. Using an animal model, they showed that the CO-induced changes in MBP set into motion an autoimmune response in which lymphocytes, triggered to eliminate altered MBP, continue to attack normal MBP.


Specifically, the researchers found that by-products of CO metabolism in the brain alter the charge and structure of MBP. "These changes in MBP have also been demonstrated in multiple sclerosis, which is why we paralleled the study along those lines," says Thom.

To link acute CO poisoning to long-term brain injury, the team conducted tests on normal versus CO-poisoned rats, comparing their abilities to navigate and memorize a maze. "CO poisoned rats don’t learn," said Thom. "But if you render their immune systems tolerant to altered MBP, by feeding them normal MBP before CO poisoning and thereby short-circuiting the lymphocyte response, the rats learn normally."

Thom says that overall this work suggests that the 50 percent or more of patients who develop brain damage following severe CO poisoning may do so, in large part, due to an autoimmune reaction. The body simply does not know when to stop attacking what it now views as an invader. "This opens up a lot of possibilities, such as treatment with immunosuppressant agents, in conjunction with standard hyperbaric oxygen therapy," he says. "Until our study elucidated this immune response, we had no motivation to think along those lines."

Penn colleagues on the paper are: Veena M. Bhopale, Donald Fisher, Jie Zhang, and Phyllis Gimotty. This study was funded by the National Institutes of Health.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>