Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DHA-rich diet protects brain from Alzheimer’s damage

02.09.2004


Omega-3 fatty acid may prevent Alzheimer’s disease and slow its progression



UCLA neuroscientists have shown for the first time that a diet high in the omega-3 fatty acid DHA helps protect the brain against the memory loss and cell damage caused by Alzheimer’s disease. The new research suggests that a DHA-rich diet may lower one’s risk of Alzheimer’s disease and may help slow progression of the disorder in its later stages. The journal Neuron reported the findings on Sept. 2. "This is the first proof that our diets affect how our brain cells communicate with each other under the duress of Alzheimer’s disease," explained Greg Cole, Ph.D., senior author and a professor of neurology at the David Geffen School of Medicine at UCLA. "We saw that a diet rich in DHA, or docosahexaenoic acid, dramatically reduces the impact of the Alzheimer’s gene.

"Consuming more DHA is something the average person can easily control," added Cole, associate director of the UCLA Alzheimer’s Disease Research Center. "Anyone can buy DHA in its purified form, fish-oil capsules, high-fat fish or DHA-supplemented eggs."


Cole and his colleagues focused on Alzheimer’s damage to synapses – the chemical connections between brain cells that enable memory and learning.

By using mice bred with genetic mutations that cause the brain lesions linked to advanced Alzheimer’s disease, the UCLA researchers created a mouse model to test environmental risk factors for the disorder. When the mice developed the lesions, but showed minimal memory loss or synaptic brain damage, however, the scientists took a closer look at the animals’ diet. "We discovered that the mice lived on a nutritious diet of soy and fish – two ingredients chock-full of omega-3 fatty acids," said Sally Frautschy, Ph.D., co-author and an associate professor of neurology at the David Geffen School of Medicine at UCLA. "Because earlier studies suggest that omega-3 fatty acids may prevent Alzheimer’s disease, we realized that the mice’s diet could be countering the very thing we were trying to accomplish – showing the progression of the Alzheimer’s-related brain damage," she added.

The UCLA team swapped safflower oil for the soy and fish to create an unhealthful diet depleted of omega-3 fatty acids. They divided the animals into two sets of older mice, which already showed brain lesions but displayed no major loss of brain-cell activity. The researchers placed both groups on the new diet, but fed the second group DHA supplements from algae.

After five months, the researchers compared each set of mice to a control group that consumed the same diet but did not carry the Alzheimer’s genes. The results surprised them. "We found high amounts of synaptic damage in the brains of the Alzheimer’s-diseased mice that ate the DHA-depleted diet," observed Frautschy. "These changes closely resembled those we see in the brains of people with Alzheimer’s disease."

Although the mice on the DHA-supplemented diet also carried the Alzheimer’s genes, they still performed much better in memory testing than the mice in the first group. "After adjusting for all possible variables, DHA was the only factor remaining that protected the mice against the synaptic damage and memory loss that should have resulted from their Alzheimer’s genes," said Cole. "We concluded that the DHA-enriched diet was holding their genetic disease at bay."

Frautschy and Cole plan to parlay their findings into a new study focused on tracking DHA-related biomarkers in the urine and cerebral spinal fluid of Alzheimer’s disease patients. "If we can detect biomarkers of Alzheimer’s disease earlier, we can intervene with treatment sooner," noted Cole.

The human brain absorbs DHA rapidly, making a constant supply critical for proper cognitive function, eye development and mental tasks. DHA helps keep the brain membrane fluid, moves proteins and helps to convert signals from other parts of the body into action.

Cheap sources of DHA include coldwater fish, like salmon, halibut, mackerel, sardines and herring. These fish consume algae, which is high in DHA.

Because these fishes’ oiliness makes them absorb more mercury, dioxin, PCP and other metals, however, a less risky yet more costly strategy is to consume fish oil or purified DHA supplements made from algae. Other options include DHA-rich eggs laid by chickens that eat DHA-supplemented feed.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>