Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene changes linked to increased eye pressure may have implications for glaucoma therapy

13.08.2004


University of North Carolina at Chapel Hill scientists have discovered that increased pressure within the eye alters a set of genes normally involved in preventing hardening of tissue.

Increased eye pressure often occurs in glaucoma, a blinding eye disease that affects about 70 million people worldwide, and the new findings may have implications for treating this disease. The study currently appears in the online October issue of the Journal of Cellular Physiology.

"Pressure is required in the eye to keep its shape, and this pressure is maintained in the front part of the eye by a fluid, the aqueous humor," said Dr. Teresa Borrás, the paper’s senior author and professor of ophthalmology in UNC’s School of Medicine. From 1997 to 2002, Borrás held a Research to Prevent Blindness Jules and Doris Stein Professorship Award.



The aqueous humor is created by the ciliary body, a tissue beneath the eye’s iris. The fluid flows around the iris and out through the trabecular meshwork, or TM, a spongy tissue that provides resistance and maintains the pressure, Borrás said.

Often in glaucoma, the TM stops working and fluid builds up within the eye, causing pressure inside the eye to rise. When this happens, the optic nerve in the back of the eye can become squeezed. As this is the area that carries the visual signals from eye to brain, vision loss can occur, Borrás said.

In earlier studies, Borrás and her research group had shown that a greater outflow of fluid occurred when researchers artificially increased the pressure in human donor eyes.

"It was like the TM had a homeostatic counteracting mechanism that could sense an increase in pressure and open up a little bit, to help move the fluid out of the eye," said Borrás.

However, it was unclear how the TM achieved this pressure regulation. This study was aimed at measuring what genes were turned on or off in the TM after the pressure was increased, Borrás added.

The UNC scientists knew that the homeostatic mechanism would involve sensing and triggering other genes. They were not surprised that most of the genes that were turned on fell into the group responsible for the cell signaling processes, Borrás said.

But unexpectedly, the genes switched on included two known from previous work to be involved in bone physiology: matrix Gla protein (MGP) and perlecan. In addition, the gene for spectrin, a protein that alters cell shape, was switched off.

MGP prevents the hardening of cartilage to bone, and perlecan has been implicated in allowing tissue to withstand compression, Borrás said. Spectrin helps maintain cell shape. Thus, when spectrin is switched off, cells are more easily deformed.

"It appears that these proteins help keep the TM soft, which would make the outflow of fluid easier and help to maintain normal pressure," said Borrás.

The research team now is trying to better understand the role of these proteins in the regulation of pressure by the TM. "Our goal is to determine if one of these proteins can be used to treat glaucoma," said Borrás.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>