Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel and Effective Treatment for Soft Tissue Sarcoma in Children

16.07.2004


Rhabdomyosarcoma is a highly malignant aggressive form of soft tissue cancer in children, the causes of which are currently unknown. Although the fibrous growths can be found all over the body they commonly develop around the head, neck, bladder and testes in young boys. The most common age for onset is between 1-5 years of age. The treatments used are usually chemotherapy using a combination of drugs, radiotherapy and surgery and although quite effective (66% success rate at present), the side affects commonly experienced by the young patients are very unpleasant and the whole process can prove to be very traumatic not only for the patient but for the families too. So there is a need for a better way of treating the disease.



At present the cocktail of drugs administered through the chemotherapy route are not selective to the cancer cells and so they also attack healthy cells. In order for the treatment to be effective without causing unnecessary tissue damage, researchers have been looking for ways to specifically target the cancer cells in order to deliver the therapeutic agent that will kill the tumour.

An unexpected link between rhabdomyosarcoma and a particular form of a disease known as myasthenia gravis was recently discovered by University scientists. Research was being carried out at the University of Oxford amongst women suffering from spontaneous miscarriages caused by an autoimmune response to their own foetus. It was then discovered that the mothers were producing antibodies against a molecule on the surface of the foetal cells which was the same as that present on the surface of the rhabdomyosarcoma cells. Scientists at the University of Würzburg then made molecules that were smaller fragments of the antibody but which would still have the same attraction for the rhabdomyosarcoma cells as for the original antibody. A gene that encodes the fragments was then transferred into a bacteria containing the DNA for a toxin. An immunotoxin was then produced containing the antibody fragment and the toxin together which is able to target the sarcoma cells using the antibody fragment and kill them with the toxin.


The immunotoxin has already been tested in a good model system and the positive results achieved have been able to show the therapeutic potential of the technique. The antibody fragment is also able to carry other toxins or even radioactive elements such as Yttrium for delivery to the site of a tumour.

Dr Richard Middleton, the project manager from Isis Innovation Ltd, the technology transfer company for the University of Oxford stated, “This is excellent science leading to an application which may be of real benefit to people in an area of currently unmet need”.

| newswise
Further information:
http://www.isis-innovation.com

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>