Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Tech Captures Toxic Micro-Organisms

15.07.2004


Sophisticated technology developed to ensure clean air for astronauts onboard space stations is now used in hospitals to capture and destroy airborne fungi, bacteria, spores and viruses. It can also eliminate microorganisms causing SARS, ebola, smallpox, and tuberculosis as well as anthrax.



Most of the airborne micro-organisms around us do not present grave hazards to healthy people, however they can pose serious threats to those with reduced immune resistance. The space technology ’PlasmerTM’ now provides an innovative solution to guarantee clean air in several European hospitals.

PlasmerTM is a multistage system using strong electric fields and cold-plasma chambers to eliminate micro-organisms in the air. Using this space technology, the AirInSpace company with support from ESA’s Technology Transfer and Promotion Office (TTP) has developed a transportable and protective unit for use in hospitals and emergency scenarios, providing an easy deployable clean room.


"With the special Plasmer technology we have managed to develop an innovative solution to provide clean air by destroying more than 99.9% of micro-organisms, responding to the special needs of immune-compromised patients in hospitals," says Laurent Fullana, General Manager of AirInSpace.

"Our system ’ImmunairTM’ uses five PlasmerTM reactors to provide a clean-air ’tent’, free of infective germs around a patient’s bed. It is targeted primarily for immuno-haematology, oncology, reanimation and transplant hospital departments. We have produced a smaller version, ’Cool Plasmair’, with no ’tent’, for use across a wide range of hospital areas where cross infection is a concern."

Since early 2001 the system has been under test for a 12-month period in five hospitals. Dr Svetlana Challier, of the Necker Hospital in Paris, says, "ImmunairTM makes it possible to reduce significantly the bacteria level in the air."

Another user of the system, Professor François Demeocq, CHU/Hôtel-Dieu in Clermont-Ferrand, reports, "The biological protection with the ImmunairTM system is very satisfactory and responds well to the needs required for children with strongly reduced immune defence following chemotherapy treatments. It could also be used to provide the protection after transplants."

Demeocq adds, "For the children and their parents, this device is more convenient in everyday life and allows the emotional contact which is essential for these children who are isolated for a very long time."

The PlasmerTM technology for the biological decontamination of air onboard manned spacecraft was invented in the early 90s by a group of Russian scientists. In 1997 the Russian space station MIR was equipped with PlasmerTM reactors successfully protecting cosmonauts and electronic equipment from bacteria, viruses and fungal contamination.

In April 2001, PlasmerTM reactors were installed to clean the air from micro-organisms in the Russian segments on the International Space Station. Now the PlasmerTM space technology has moved down to Earth to protect immune-compromised patients in hospitals.

Pierre Brisson | alfa
Further information:
http://www.esa.int

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>