Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We learn while we sleep - Link discovered between slow brain waves and learning success

30.06.2004


If you want to pass an exam, be sure to get some good sleep before-hand. Because in sleep the brain processes and consolidates newly learnt matter. This is revealed in a new study shortly to be published in Nature. The study was supported by the Swiss National Science Foundation (SNSF).

As soon as deep sleep sets in, the brain cells start working in concord. Like football fans raising their hands in unison during a Mexican wave, millions of individual brain cells respond simultaneously with an electric signal. They thus generate the regular, low-frequency brain waves that are characteristic of deep sleep. Until now, the purpose of this brain activity was largely unknown. The shortly to be published study puts this function in a new context. Slow brain waves appear to consolidate and reinforce freshly learnt matter, explains Reto Huber, who conducted the study at the University of Wisconsin laboratory of Giulio Tononi in Madison, USA. The study is due for publication in the prestigious science journal Nature* on 1 July. Reto Huber holds a grant from the Swiss Foundation for Medical-Biological Scholarships (SSMBS) that was financed by the Swiss National Science Foundation.

For the purpose of the study, Reto Huber set 12 subjects a special learning task and then measured their brain activity during sleep. The subjects first had to accomplish a learning test on a computer. The basically simple task consisted of using a mouse to move the cursor to a set point on the screen. Subconsciously, however, they were learning new motor skills, because what the subjects did not know was that the computer was programmed to generate a slight aberration in the direction of the cursor movement, which they had to compensate for by modifying the mouse movements. Moreover, since their hand was covered during the experiment they did not realize the computer was playing tricks on them. Conscious learning very often involves many areas of the brain, which would have made it much harder to demonstrate local activation, explains Huber.



Such unconscious motor skills learning takes place in a small, thumbsized region of the right cerebral cortex, as other researchers have already shown. Reto Huber now wanted to find out whether this region of the brain displayed any special activity during sleep. To this end, he recorded the brain wave activities of the study subjects in their sleep by means of 256 electrodes attached all over their heads.

The large number of electrodes enabled Huber not only to register, but also to pinpoint the precise location of brain activity.

The deeper you sleep, the better you learn

And indeed the young Swiss researcher discovered what many brain researchers considered impossible. We noticed larger slow brain waves in the area of the brain that had been used for the test and nowhere else, said Huber. Not only that. The subjects who were most successful at mastering the test the next morning were also those whose brains had produced especially large slow waves during the night. The night-time brain waves seemed not only to have consolidated, but also to have enhanced performance in the computer-based test. Our study provides the first evidence that sleep plays an important role in learning processes, concludes Huber.

Scientists are still largely in the dark about the processes that actually take place in the brain during sleep at night or an afternoon nap. In particular, what happens at synapse level is largely unknown. Sleep researchers are considering the possibility that nighttime brain activity tests and sorts out newly created synapses. Important synapses would be retained and reinforced, unimportant ones disconnected. The slow brain waves may be performing a functional test of the synapses, says Huber.

Alexander Borbély, the Zurich sleep scientist under whose tutelage Huber obtained his doctorate, is impressed by these latest results. They prove that sleep can have highly localized effects on the brain. I believe these are very important findings.

Philippe Trinchan | CORDIS Wire
Further information:
http://www.snf.ch

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>