Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hyperactive Mice Eat All They Want, but Have Low Body Fat


Genetically engineered mice, created at the University of Michigan Medical School, are living every dieter’s dream. They eat unlimited amounts of high-fat mouse chow, but have about 50 percent less body fat than normal mice on a low-fat diet. And they show no signs of diabetes or other metabolic disorders, which are common in animals with too little fat.

But don’t stock up on potato chips and ice cream just yet. The genetically altered mice are leaner than normal mice, but they also have some less-than-desirable characteristics – such as underdeveloped mammary glands, an inability to generate body heat and skin that’s twice as thick as normal.

All these changes appear to be caused by a protein called Wnt10b, which is present in artificially high amounts in fat tissue from the experimental mice. Wnt10b is one of a family of 19 related proteins. Wnts (pronounced “wints”) regulate the complex changes that take place as an embryo grows. Part of this process is the development of fatty adipose tissue, which contains fat cells called adipocytes.

Ormond A. MacDougald, Ph.D., an associate professor of molecular and integrative physiology in the U-M Medical School, has spent years studying the effects of Wnt10b on the development of adipocytes. In August 2000, MacDougald and his colleagues published a paper in Science, showing that Wnt10b gene activity repressed fat cell development in tissue cultures.

Now, in the first study in living animals, MacDougald and Kenneth A. Longo, Ph.D, a U-M research fellow in physiology, have demonstrated that Wnt10b has the same effect on fatty tissue in mice.

“High levels of Wnt10b expression produced animals with 50 percent less body fat and fewer fat cells, regardless of whether the mice ate a high-fat or low-fat diet,” MacDougald says.

Results of the U-M experiments were posted this month on the Journal of Biological Chemistry’s “JBC Online” Web site (see URL at the end of this press release).

“To determine the effect of the gene on adipose tissue development, we created an artificial sequence of DNA called a transgene linking Wnt10b to another gene called the FABP4 promoter, which is expressed only in adipose tissue,” Longo says. “We injected the transgene DNA into fertilized mouse eggs and bred mice that inherited the new gene to create the animals used in our study. Under the control of the FABP4 promoter, fatty tissue in the transgenic mice contained 50 times the amount of Wnt10b found in adipose tissue from normal mice.”

Longo and MacDougald discovered that Wnt10b had a different effect on the two types of fat found in normal mice. White fat is a storage reservoir for excess energy. Brown fat is a specialized form of adipose tissue, found in small mammals and human newborns, which generates heat to keep the animal warm. While the transgenic mice in the U-M study had half as much white fat as normal mice, they had virtually no brown fat at all. This made it impossible for them to maintain their core body temperature, leaving them very vulnerable to cold.

For reasons U-M scientists don’t understand, the transgenic mice had skin that was twice as thick and much heavier than normal mice. Another puzzling and unexpected finding from the study was that the transgenic mice consumed slightly less oxygen.

But perhaps the most surprising thing about the U-M’s transgenic mice was their general state of robust good health.

“When we started making these animals, we thought they would have reduced amounts of fat, and thus suffer from metabolic complications, including diabetes,” Longo says. “Adipose tissue produces proteins, such as leptin and adiponectin, which affect the body’s ability to respond to insulin. Reduced insulin sensitivity is one of the first symptoms of diabetes. So having little or no white fat is just as devastating to your health as having too much fat.”

“Even though the Wnt10b transgenic mice had half as much adipose tissue and produced half the normal amount of leptin, they had none of the metabolic consequences we expected,” MacDougald says. “In fact, the insulin sensitivity and glucose tolerance of transgenic mice on a high-fat diet was better than that of normal mice on a low-fat diet. We don’t know why, but additional research should provide some answers.”

Currently, researchers in MacDougald’s lab are studying the effect of Wnt proteins on mice with genetically induced obesity. They also plan to explore the effect of Wnt signaling on the development of osteoblasts, the bone-forming cells in marrow.

But don’t look for Wnt10b diet pills to be on the market any time soon, cautions Longo and MacDougald.

“Pharmaceutical companies are interested in the potential therapeutic role of Wnt genes in decreasing fatty tissue, but finding the right drug to selectively target this pathway without complications will be a considerable challenge,” MacDougald says. “The goal of our research is to learn how fat cell development is regulated, but this work may also improve our understanding of obesity and its complications.”

“We’ve seen the potent effect of Wnt10b on fat in mice, but we don’t know if it would work the same way in humans,” Longo adds. “And, if the results we see in the skin of the transgenic mice are any indication, I’d say we have to tread carefully. I think we’d all like to be thicker-skinned, but only in the figurative sense.”

The research was funded by the National Institutes of Health, the U-M Center for Integrative Genomics, the U-M Center for Organogenesis, the U-M Diabetes Research and Training Center and the American Diabetes Association.

The experimental mice used in the study were produced in the U-M’s Transgenic Animal Model Core facility. The University has filed for patent protection on the Wnt10b transgenic mouse.

U-M study collaborators included Wendy S. Wright, research associate; Sona Kang, graduate student; Isabelle Gerin, Ph.D., and Shian-Huey Chiang, Ph.D., post-doctoral fellows; Peter C. Lucas, M.D., Ph.D., lecturer in pathology; and Mark R. Opp, Ph.D., associate professor of anesthesiology and of molecular and integrative physiology.

| newswise
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>