Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing Device Design is the Holy Grail of Stenting

23.06.2004


An investigation of how blood flows through stents after opening clogged arteries has led a team of researchers at the Medical College of Wisconsin Cardiovascular Center in Milwaukee to suggest that stents designed with thinner and fewer linkages may be the basis of a new generation of stents. Their findings are published in the July 2004 issue of the Journal of Applied Physiology.

One of the most common methods for treating heart blockages is balloon angioplasty, inflating tiny catheters with miniature balloons to open clogged arteries. Stents, tiny metal scaffolds, are then placed at the newly opened site in the arteries to permanently prop them open. However, 30 percent of stent patients experience restenosis, where arteries narrow again due to scar tissue and cellular growth that forms around the device.

“Currently, eliminating restenosis is the holy grail of catheter-based procedures such as angioplasty and stenting,” says John LaDisa, Ph.D., of the Medical College, who studied the stent designs. “Current research has not identified all the contributing factors to restenosis,” says Dr. LaDisa. “Now our research has shown that a stent’s design and its alteration of the blood vessel anatomy influences blood flow in ways that can contribute to restenosis. Also, restenosis rates vary according to an individual’s vessel geometry at the site of stent insertion.”



Using 3D computational fluid dynamic modeling, Dr. LaDisa investigated specific factors of stent geometry that contribute to, or minimize, the likelihood of restenosis. “We tested the hypothesis that differences in the geometric design of an implanted stent -- differences in number, width and thickness of the linkages that compose a stent -- affects the forces exerted on cells lining the vessel walls and ultimately influences restenosis rates,” he says.

“Our investigation revealed that several factors, including the thickness and number of stent struts affect restenosis,” LaDisa says. “The results suggest that future stent designs that reduce strut number and thickness will be less likely to subject a patient’s vessel to the physiological events associated with restenosis.”

Basic science researchers such as Dr. LaDisa form the ground floor of developments that lead to improved medical devices. Last year, for example, drug-coated stents, a revolution in stent design, came to market after extensive basic science research. Other investigators that contributed to the forthcoming publication include Paul S. Pagel, M.D., Ph.D., Judy R. Kersten M.D. and David C. Warltier M.D., Ph.D. from the Department of Anesthesiology and Lars. E. Olson, Ph.D., and Said H. Audi, Ph.D., from the Department of Biomedical Engineering at Marquette University. The study was supported by the Medical College’s Department of Anesthesiology.

| newswise
Further information:
http://www.mcw.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>