Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells can convert to liver tissue, help restore damaged organ

02.06.2004


Bone marrow stem cells, when exposed to damaged liver tissue, can quickly convert into healthy liver cells and help repair the damaged organ, according to new research from the Johns Hopkins Kimmel Cancer Center.



In mouse-tissue cultures, scientists found that stem cells, in the presence of cells from damaged liver tissue, developed into liver cells in as little as seven hours. They also observed that stem cells transplanted into mice with liver injuries helped restore liver function within two to seven days. The work was published in the June 1 issue of the journal Nature Cell Biology.

Bone marrow stem cells, also known as hematopoietic stem cells, have the ability to differentiate and develop into all other blood and marrow cells. There has been debate among the scientific community over whether these cells also can differentiate into other tissue types such as the liver, says Saul J. Sharkis, Ph.D., senior author of the study and a professor of oncology at the Johns Hopkins Kimmel Cancer Center. Some studies suggest that the bone marrow cells fuse with other types of cells, taking on those cells’ properties. But in this study, the researchers found, through highly thorough analysis with a microscope and other tests, that the cells did not fuse, suggesting that "microenvironmental" cues from existing liver cells caused them to convert.


"The hematopoietic stem cells were capable of taking on many characteristics of liver cell types, including specific gene and/or protein expression as well as typical function," Sharkis says. "These events occurred rapidly after injury exposure and restored liver abnormalities, indicating that the cells converted."

This type of stem cell technique could eventually be used to treat chronic diseases such as diabetes, cirrhosis of the liver, heart disease and cancer, he says. He cautions that many more studies must be completed before the stem cell therapy can be tested in humans.

For the study, Sharkis and colleagues cultured bone marrow stem cells together with either normal or damaged liver tissue in tissue culture dishes. Liver tissue was taken from mice that had been exposed to liver-damaging drugs. The two cell types were separated by a thin, permeable wall. Researchers performed several tests looking for expression of liver proteins.

In as little as seven or eight hours after culture with the injured liver tissue, some of the stem cells expressed the typical proteins present in liver cells cytokeratin 18 or albumin. Two days after culture, nearly 3 percent of all stem cells expressed these proteins. The researchers also observed the expression of many other proteins and products normally manufactured by liver cells in their earliest stages -- all detected within eight to 48 hours of culture.

The team then used a sensitive microscope test to examine the sex chromosomes of the cells, as the stem cells were taken from male mice and the liver tissue was taken from female mice. They identified some stem cells of male donor origin with four sex chromosomes typical of liver cells but not stem cells, indicating that the stem cells themselves physically had started to change and did not fuse with the liver cells.

Finally, the team transplanted the stem cells into injured livers in female mice and studied the amount of conversion at two and seven days following the transplant. More converted cells were observed at seven days versus two days, suggesting that the cells remained viable and continued dividing or converting. The liver functions of mice receiving the stem cells recovered as early as two days after transplant.

Sharkis’ continuing studies will try to identify the environmental cues responsible for cells’ conversion, and examine the ability of stem cells to repair other organs.

The study was funded by the National Heart, Lung and Blood Institute, the Ludwig Foundation and Hopkins’ Institute for Cellular Engineering. Co-authors were Yoon-Young Jang M.D., Ph.D.; Michael I. Collector; Stephen B. Baylin, M.D.; and Anna Mae Diehl, M.D.


Jang, Yoon-Young et al, "Hematopoietic Stem Cells Convert Into Liver Cells Within Days Without Fusion," Nature Cell Biology, June 1, 2004.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.hopkinskimmelcancercenter.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>