Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cells can convert to liver tissue, help restore damaged organ


Bone marrow stem cells, when exposed to damaged liver tissue, can quickly convert into healthy liver cells and help repair the damaged organ, according to new research from the Johns Hopkins Kimmel Cancer Center.

In mouse-tissue cultures, scientists found that stem cells, in the presence of cells from damaged liver tissue, developed into liver cells in as little as seven hours. They also observed that stem cells transplanted into mice with liver injuries helped restore liver function within two to seven days. The work was published in the June 1 issue of the journal Nature Cell Biology.

Bone marrow stem cells, also known as hematopoietic stem cells, have the ability to differentiate and develop into all other blood and marrow cells. There has been debate among the scientific community over whether these cells also can differentiate into other tissue types such as the liver, says Saul J. Sharkis, Ph.D., senior author of the study and a professor of oncology at the Johns Hopkins Kimmel Cancer Center. Some studies suggest that the bone marrow cells fuse with other types of cells, taking on those cells’ properties. But in this study, the researchers found, through highly thorough analysis with a microscope and other tests, that the cells did not fuse, suggesting that "microenvironmental" cues from existing liver cells caused them to convert.

"The hematopoietic stem cells were capable of taking on many characteristics of liver cell types, including specific gene and/or protein expression as well as typical function," Sharkis says. "These events occurred rapidly after injury exposure and restored liver abnormalities, indicating that the cells converted."

This type of stem cell technique could eventually be used to treat chronic diseases such as diabetes, cirrhosis of the liver, heart disease and cancer, he says. He cautions that many more studies must be completed before the stem cell therapy can be tested in humans.

For the study, Sharkis and colleagues cultured bone marrow stem cells together with either normal or damaged liver tissue in tissue culture dishes. Liver tissue was taken from mice that had been exposed to liver-damaging drugs. The two cell types were separated by a thin, permeable wall. Researchers performed several tests looking for expression of liver proteins.

In as little as seven or eight hours after culture with the injured liver tissue, some of the stem cells expressed the typical proteins present in liver cells cytokeratin 18 or albumin. Two days after culture, nearly 3 percent of all stem cells expressed these proteins. The researchers also observed the expression of many other proteins and products normally manufactured by liver cells in their earliest stages -- all detected within eight to 48 hours of culture.

The team then used a sensitive microscope test to examine the sex chromosomes of the cells, as the stem cells were taken from male mice and the liver tissue was taken from female mice. They identified some stem cells of male donor origin with four sex chromosomes typical of liver cells but not stem cells, indicating that the stem cells themselves physically had started to change and did not fuse with the liver cells.

Finally, the team transplanted the stem cells into injured livers in female mice and studied the amount of conversion at two and seven days following the transplant. More converted cells were observed at seven days versus two days, suggesting that the cells remained viable and continued dividing or converting. The liver functions of mice receiving the stem cells recovered as early as two days after transplant.

Sharkis’ continuing studies will try to identify the environmental cues responsible for cells’ conversion, and examine the ability of stem cells to repair other organs.

The study was funded by the National Heart, Lung and Blood Institute, the Ludwig Foundation and Hopkins’ Institute for Cellular Engineering. Co-authors were Yoon-Young Jang M.D., Ph.D.; Michael I. Collector; Stephen B. Baylin, M.D.; and Anna Mae Diehl, M.D.

Jang, Yoon-Young et al, "Hematopoietic Stem Cells Convert Into Liver Cells Within Days Without Fusion," Nature Cell Biology, June 1, 2004.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>