Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-adhesive For Viscera And Tissues

01.06.2004


It is more convenient to glue parts together than to suture them. Even surgeons agree to that. They only need a good adhesive. Siberian researchers have created the third generation bio-adhesive and successfully tested it on animals.



Surgery is steadily improving methods for joining of slit parts. To solve the problem, biological adhesives were recently used. More often physicians use chemical compounds based on alpha cyanoacrylates, which do not provoke allergy or stimulate tumorogenesis. The Novosibirsk researchers, specialists of the Central Administrative Board for Research Center of Clinical and Experimental Medicine (Siberian Branch, Russian Academy of Medical Sciences), Central Administrative Board for Scientific Research Institute of Regional Pathology and Pathomorphology (Siberian Branch, Russian Academy of Medical Sciences) and Novosibirsk State Medical Academy (Ministry of Public Health of the Russian Federation) have developed a new adhesive composition called “Sulfacrylate” and tested it in practice.

“Sulfacrylate” is bio-adhesive of the third generation, it includes various esters of acrylic acid and its derivatives. Experiments were carried out on 142 animals: rats, outbred cats and Chinchilla rabbits. Under anaesthetic, in line with all rules of operating skill, a part of animals’ liver, spleen, kindey or bowels was ablated and then the injured tissues were glued together. The background groups consisted of the animals which were sutured after the operation. The researchers were interested in the influence of bio-adhesive on the tissues in the course of cicatrization, therefore the operated animals were slaughtered 3, 6 and 12 hours, a day, a week and a month after the operation to investigate the tissue status under the microscope.


The observations proved that the adhesive lays well on tissues and forms a polymer film. The film stops local bleeding and joins the slit parts hermetically. The zone of mortifing tissue, which always occurs in the area of the wound, was small and well-defined. “Sulfacrylate” contributed to formation of this zone, however its local toxic effect was over soon. In a month the wound closed up completely and the adhesive dissolved. Inflammation inevitably accompanies cicatrization, but the adhesive allowed to avoid festering. The animals from the background group had tissues injured not only during the operation, but also during suture, therefore the necrotic zone and local hemorrhages were much more extensive than in case of utilizing the adhesive, and cicatrization went through a stage of suppurative inflammation with microabscesses.

The benefits of “Sulfacrylate” are particularly noticeable in the cases when a lanced intestine is to be joined butt-to-butt. The researchers tested this joint for strength with the help of special pneumoequipment, which allows to measure the threshhold pressure: the adhesive joins stronger than the suture material. Glued intestinal loops can stand even severe treatment when getting preparations ready for microscopy. No stitch separated, no intestinal lumen was narrowed, no commissures occured either between intestinal loops, or adjacent organs, let alone peritonitis. Three months after the operation, the glued intestine remained elastic and did not become deformed, but the animals from the background group experienced all complications typical of intestines operations.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>