Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortened chromosomes linked to early stages of cancer development

27.05.2004


Scientists at the Johns Hopkins Kimmel Cancer Center say they have evidence that abnormally short telomeres - the end-caps on chromosomes that normally preserve genetic integrity -appear to play a role in the early development of many types of cancer.



"Cancer researchers have debated whether shortened telomeres were a cause or effect of tumors," says Alan K. Meeker, Ph.D., lead author of the study and a postdoctoral fellow in urology and pathology at Hopkins. "What our study suggests is that telomere dysfunction may be a key component in the development of many epithelial cancers, those that arise from tissues lining our organs."

Studying tissue taken from small precancerous lesions in the bladder, esophagus, large intestine, mouth and cervix, the research team found abnormal telomere lengths in 97 percent of the cases examined. In particular, abnormally short telomeres were found in 88 percent of cases.


"We were surprised how often you see shortened telomeres this early in the development of these cancers," says Meeker. "It’s a strong indicator that abnormal telomeres are likely playing a causal role in cancer development."

Telomeres cap the chromosome ends, protecting the interior, gene-containing parts of the chromosome from being accidentally lost. As normal cells divide and age, some of the telomere DNA is lost, and the telomeres get progressively shorter. Normal cells monitor the lengths of their telomeres and initiate cell suicide or halt cell division when telomeres get too short. Other researchers have shown in mice that cancer, which is characterized principally by unrestricted cell growth and lack of cell death, can occur if this monitoring system breaks down, leading to the development of chromosomal abnormalities.

"It appears that the telomere shortening frequently observed in large advanced tumors has already occurred before it can be detected by standard diagnostic tools, when cellular changes characteristic of early precancer can only be seen through a microscope by a pathologist," says Angelo M. De Marzo, M.D., Ph.D., senior author of the study and associate professor of urology, pathology and oncology at Johns Hopkins. "Therefore, intervention strategies aimed at preventing, or even reversing, telomere shortening may be effective in lowering cancer incidence. And assessing telomere length may provide a new direction for cancer prevention studies, and lead to improved early diagnosis of precancerous lesions."

For the study, published in the May 15 issue of the journal Clinical Cancer Research, Meeker, De Marzo and colleagues used a technique called fluorescent in situ hybridization (FISH) to compare telomere length in cells from both precancerous lesions and normal surrounding cells of the bladder, esophagus, large intestine, mouth and cervix.

The FISH test uses fluorescent-labeled probes specific for particular locations in DNA and is commonly used to detect or confirm gene or chromosome abnormalities. Chromosomal DNA is first denatured, a process that separates the strands within the DNA’s double helix structure. The Hopkins scientists then added a fluorescent probe specific for telomere regions. As the DNA re-forms into a double helix, it blends with the fluorescent molecules, enabling scientists to examine specific chromosomal locations under a microscope for the level of fluorescence that corresponds to telomere length.

Not all precancerous epithethial lesions are capable of fully advancing to malignant cancers, Meeker says. One reason for this may be that if genetic instability gets too high, the cells die, thus blocking cancer progression. Only cells that find a way to balance their telomere length - allowing unlimited cell division and a limited degree of genomic stabilization - can progress to becoming an invasive, life-threatening tumor.

The Hopkins research team examined 35 precancerous lesions from 25 patients, including 11 lesions from eight bladders, three lesions from three uterine cervixes, seven lesions from five large intestines, six lesions from three esophagi and eight lesions from six mouths. They scored the telomere lengths on a five-point scale ranging from very short to very long.

Overall, the group found telomere length abnormalities in 34 of 35 lesions studied (97 percent). Short or very short telomeres were observed in all lesions of the esophagus, large intestine and uterine cervix; in eight of 11 (72 percent) lesions of the bladder; and in seven of eight lesions of the oral cavity, which includes the mouth and throat. Ten of 35 (29 percent) lesions, particularly those of the bladder, displayed a variety of telomere lengths.

More than one million human epithelial cancers are diagnosed every year, Meeker says, and these cancers cause a half-million deaths each year.

Previous studies by the research team and others at Johns Hopkins found shortened telomeres in more than 90 percent of precancerous lesions of the prostate, pancreas and breast.


The current study was funded by the U.S. Public Health Service. Coauthors were Jessica L. Hicks, Christine A. Iacobuzio-Donahue, Elizabeth A. Montgomery, William H. Westra, Theresa Y. Chan and Brigitte M. Ronnett.

Meeker, Alan K., et al, "Telomere Length Abnormalities Occur Early in the Initiation of Epithelial Carcinogenesis," Clinical Cancer Research, May 15, 2004, Vol. 10, Issue 10.

Vanessa Wasta | EurekAlert!
Further information:
http://clincancerres.aacrjournals.org
http://www.hopkinskimmelcancercenter.org/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>