Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortened chromosomes linked to early stages of cancer development

27.05.2004


Scientists at the Johns Hopkins Kimmel Cancer Center say they have evidence that abnormally short telomeres - the end-caps on chromosomes that normally preserve genetic integrity -appear to play a role in the early development of many types of cancer.



"Cancer researchers have debated whether shortened telomeres were a cause or effect of tumors," says Alan K. Meeker, Ph.D., lead author of the study and a postdoctoral fellow in urology and pathology at Hopkins. "What our study suggests is that telomere dysfunction may be a key component in the development of many epithelial cancers, those that arise from tissues lining our organs."

Studying tissue taken from small precancerous lesions in the bladder, esophagus, large intestine, mouth and cervix, the research team found abnormal telomere lengths in 97 percent of the cases examined. In particular, abnormally short telomeres were found in 88 percent of cases.


"We were surprised how often you see shortened telomeres this early in the development of these cancers," says Meeker. "It’s a strong indicator that abnormal telomeres are likely playing a causal role in cancer development."

Telomeres cap the chromosome ends, protecting the interior, gene-containing parts of the chromosome from being accidentally lost. As normal cells divide and age, some of the telomere DNA is lost, and the telomeres get progressively shorter. Normal cells monitor the lengths of their telomeres and initiate cell suicide or halt cell division when telomeres get too short. Other researchers have shown in mice that cancer, which is characterized principally by unrestricted cell growth and lack of cell death, can occur if this monitoring system breaks down, leading to the development of chromosomal abnormalities.

"It appears that the telomere shortening frequently observed in large advanced tumors has already occurred before it can be detected by standard diagnostic tools, when cellular changes characteristic of early precancer can only be seen through a microscope by a pathologist," says Angelo M. De Marzo, M.D., Ph.D., senior author of the study and associate professor of urology, pathology and oncology at Johns Hopkins. "Therefore, intervention strategies aimed at preventing, or even reversing, telomere shortening may be effective in lowering cancer incidence. And assessing telomere length may provide a new direction for cancer prevention studies, and lead to improved early diagnosis of precancerous lesions."

For the study, published in the May 15 issue of the journal Clinical Cancer Research, Meeker, De Marzo and colleagues used a technique called fluorescent in situ hybridization (FISH) to compare telomere length in cells from both precancerous lesions and normal surrounding cells of the bladder, esophagus, large intestine, mouth and cervix.

The FISH test uses fluorescent-labeled probes specific for particular locations in DNA and is commonly used to detect or confirm gene or chromosome abnormalities. Chromosomal DNA is first denatured, a process that separates the strands within the DNA’s double helix structure. The Hopkins scientists then added a fluorescent probe specific for telomere regions. As the DNA re-forms into a double helix, it blends with the fluorescent molecules, enabling scientists to examine specific chromosomal locations under a microscope for the level of fluorescence that corresponds to telomere length.

Not all precancerous epithethial lesions are capable of fully advancing to malignant cancers, Meeker says. One reason for this may be that if genetic instability gets too high, the cells die, thus blocking cancer progression. Only cells that find a way to balance their telomere length - allowing unlimited cell division and a limited degree of genomic stabilization - can progress to becoming an invasive, life-threatening tumor.

The Hopkins research team examined 35 precancerous lesions from 25 patients, including 11 lesions from eight bladders, three lesions from three uterine cervixes, seven lesions from five large intestines, six lesions from three esophagi and eight lesions from six mouths. They scored the telomere lengths on a five-point scale ranging from very short to very long.

Overall, the group found telomere length abnormalities in 34 of 35 lesions studied (97 percent). Short or very short telomeres were observed in all lesions of the esophagus, large intestine and uterine cervix; in eight of 11 (72 percent) lesions of the bladder; and in seven of eight lesions of the oral cavity, which includes the mouth and throat. Ten of 35 (29 percent) lesions, particularly those of the bladder, displayed a variety of telomere lengths.

More than one million human epithelial cancers are diagnosed every year, Meeker says, and these cancers cause a half-million deaths each year.

Previous studies by the research team and others at Johns Hopkins found shortened telomeres in more than 90 percent of precancerous lesions of the prostate, pancreas and breast.


The current study was funded by the U.S. Public Health Service. Coauthors were Jessica L. Hicks, Christine A. Iacobuzio-Donahue, Elizabeth A. Montgomery, William H. Westra, Theresa Y. Chan and Brigitte M. Ronnett.

Meeker, Alan K., et al, "Telomere Length Abnormalities Occur Early in the Initiation of Epithelial Carcinogenesis," Clinical Cancer Research, May 15, 2004, Vol. 10, Issue 10.

Vanessa Wasta | EurekAlert!
Further information:
http://clincancerres.aacrjournals.org
http://www.hopkinskimmelcancercenter.org/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>