Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore gene treatment to obliterate HIV before it does damage

26.05.2004


Volunteers now sought for Stanford trial



Doctors may someday have a new way to combat AIDS by going straight to the source: destroying the virus before it has a chance to wreak havoc on a patient’s immune system.

Thomas Merigan, MD, the George and Lucy Becker Professor of Medicine in infectious diseases at Stanford University School of Medicine, is seeking volunteers for a study to test a possible method of empowering an infected person’s own cells to destroy HIV as it enters the cell. The process involves removing the patient’s stem cells - the ones in the bloodstream that form the different immune system cell types that HIV infects, such as T cells and macrophages - and inserting a gene that produces an HIV-obliterating enzyme.


"This is a broad-spectrum treatment that could integrate well with other therapies as the disease progresses, as it will in all patients eventually," said Merigan, who is collaborating with other researchers at UCLA and St. Vincent’s Hospital in Sydney, Australia, under the sponsorship of Johnson & Johnson Research. "The goal is to genetically engineer the cells and make them resistant to infection."

The strategy developed by Merigan and his colleagues relies on the fact that the genetic information of HIV is encoded in RNA rather than DNA. Enzymes called ribozymes can chew up RNA at very specific sites, rendering it inactive. If a ribozyme specific to HIV RNA were present inside the cells that the virus infects, then it could constitute a first-line defense against the invasion. Even if HIV did make it into the cell and replicated, the ribozyme could potentially cleave the HIV RNA at various steps during the virus’ life cycle. With this unique approach to warding off HIV infection, the enzyme produced by a person’s own vulnerable cells could demolish the critical genetic instructions of HIV while not affecting his or her RNA.

"With this technique, we’d like to be able to offer an additional approach for patients who in their own minds appear to be doing quite well," said Merigan. "We know there is a sufficient risk that patients will eventually need more than the 19 drugs currently available."

A total of 70 patients will be enrolled at three sites for this stage of the testing. The participants will be randomly assigned to receive either the ribozyme gene therapy or a dummy gene. Johnson & Johnson Research produces the reagents used for introducing ribozyme into the blood stem cells.

In the field of AIDS treatment, there is recognition that an approach like the one Merigan is testing would be a huge development in the ability to combat HIV. David Evans, an information and advocacy associate for Project Inform, a San Francisco-based national nonprofit working to end the AIDS epidemic, said, "Experiments of this type fall perfectly in line with Project Inform’s agenda to refocus researchers toward a cure for HIV rather than indefinite treatment with costly antiviral drugs that consistently lead to drug resistance and long-term toxicities."

Martin Delaney, founding director of Project Inform, said he applauds the researchers for their persistence and continued interest in developing new treatments for HIV/AIDS, but added, "It is too early to comment on the potential of this particular experiment and, even if successful, it will be several years before the results can be turned into a widely accessible therapy."

Merigan said that similar studies testing the strategy of using gene therapy in more than 1,200 patients have proven the technique to be safe. The safety studies for the current trial looked at a total of 14 patients and found no safety concerns.

Merigan discussed a scare a few years ago when two babies undergoing gene therapy developed leukemia, which was successfully treated. He noted that the HIV trial had been delayed for two years while the trial’s safety design was examined by the National Institutes of Health, the U.S. Food and Drug Administration and local review boards. He said the verdict was that the immune system of adults with HIV differs greatly from that of babies, whose immune systems are not fully formed, and that they should not face the same risk.

The criteria for potential study participants are strict at this stage: men and women with HIV who are between ages 18 and 45, on only the first or second round of anti-retroviral therapy, a relatively low amount of virus in the blood (less than 50 particles per milliliter of blood) and a reasonably high level of T cells (300 cells per microliter of blood or greater). Pregnant women or those with any AIDS-related illnesses will not be included in this trial. Those who are interested should call (650) 723-6231.


Others in the study team in the division of infectious diseases at Stanford include Andrew Zolopa, MD, associate professor of medicine; Michael Harbour, MD, clinical instructor; Debbie Slamowitz, study coordinator for clinical trials; Jane Norris and Sandy Valle, physician assistants; Patricia Cain and Sylvia Stoudt, staff nurses; and Mark Winters, research assistant.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>