Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore gene treatment to obliterate HIV before it does damage

26.05.2004


Volunteers now sought for Stanford trial



Doctors may someday have a new way to combat AIDS by going straight to the source: destroying the virus before it has a chance to wreak havoc on a patient’s immune system.

Thomas Merigan, MD, the George and Lucy Becker Professor of Medicine in infectious diseases at Stanford University School of Medicine, is seeking volunteers for a study to test a possible method of empowering an infected person’s own cells to destroy HIV as it enters the cell. The process involves removing the patient’s stem cells - the ones in the bloodstream that form the different immune system cell types that HIV infects, such as T cells and macrophages - and inserting a gene that produces an HIV-obliterating enzyme.


"This is a broad-spectrum treatment that could integrate well with other therapies as the disease progresses, as it will in all patients eventually," said Merigan, who is collaborating with other researchers at UCLA and St. Vincent’s Hospital in Sydney, Australia, under the sponsorship of Johnson & Johnson Research. "The goal is to genetically engineer the cells and make them resistant to infection."

The strategy developed by Merigan and his colleagues relies on the fact that the genetic information of HIV is encoded in RNA rather than DNA. Enzymes called ribozymes can chew up RNA at very specific sites, rendering it inactive. If a ribozyme specific to HIV RNA were present inside the cells that the virus infects, then it could constitute a first-line defense against the invasion. Even if HIV did make it into the cell and replicated, the ribozyme could potentially cleave the HIV RNA at various steps during the virus’ life cycle. With this unique approach to warding off HIV infection, the enzyme produced by a person’s own vulnerable cells could demolish the critical genetic instructions of HIV while not affecting his or her RNA.

"With this technique, we’d like to be able to offer an additional approach for patients who in their own minds appear to be doing quite well," said Merigan. "We know there is a sufficient risk that patients will eventually need more than the 19 drugs currently available."

A total of 70 patients will be enrolled at three sites for this stage of the testing. The participants will be randomly assigned to receive either the ribozyme gene therapy or a dummy gene. Johnson & Johnson Research produces the reagents used for introducing ribozyme into the blood stem cells.

In the field of AIDS treatment, there is recognition that an approach like the one Merigan is testing would be a huge development in the ability to combat HIV. David Evans, an information and advocacy associate for Project Inform, a San Francisco-based national nonprofit working to end the AIDS epidemic, said, "Experiments of this type fall perfectly in line with Project Inform’s agenda to refocus researchers toward a cure for HIV rather than indefinite treatment with costly antiviral drugs that consistently lead to drug resistance and long-term toxicities."

Martin Delaney, founding director of Project Inform, said he applauds the researchers for their persistence and continued interest in developing new treatments for HIV/AIDS, but added, "It is too early to comment on the potential of this particular experiment and, even if successful, it will be several years before the results can be turned into a widely accessible therapy."

Merigan said that similar studies testing the strategy of using gene therapy in more than 1,200 patients have proven the technique to be safe. The safety studies for the current trial looked at a total of 14 patients and found no safety concerns.

Merigan discussed a scare a few years ago when two babies undergoing gene therapy developed leukemia, which was successfully treated. He noted that the HIV trial had been delayed for two years while the trial’s safety design was examined by the National Institutes of Health, the U.S. Food and Drug Administration and local review boards. He said the verdict was that the immune system of adults with HIV differs greatly from that of babies, whose immune systems are not fully formed, and that they should not face the same risk.

The criteria for potential study participants are strict at this stage: men and women with HIV who are between ages 18 and 45, on only the first or second round of anti-retroviral therapy, a relatively low amount of virus in the blood (less than 50 particles per milliliter of blood) and a reasonably high level of T cells (300 cells per microliter of blood or greater). Pregnant women or those with any AIDS-related illnesses will not be included in this trial. Those who are interested should call (650) 723-6231.


Others in the study team in the division of infectious diseases at Stanford include Andrew Zolopa, MD, associate professor of medicine; Michael Harbour, MD, clinical instructor; Debbie Slamowitz, study coordinator for clinical trials; Jane Norris and Sandy Valle, physician assistants; Patricia Cain and Sylvia Stoudt, staff nurses; and Mark Winters, research assistant.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>