Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU researcher finds genetic explanations for some previously unexplained sudden cardiac deaths


Further research will explore extent of genes’ role in sudden cardiac death

Imagine walking down the street, collapsing without warning and dying within minutes. According to the American Heart Association, about 250,000 Americans suffer sudden cardiac death each year, and half of them may have no prior warning. And, in 5 to 10 percent of all cases, these sudden cardiac deaths remain unexplained since the heart may have no visible abnormality.

In an effort to explore if defects in genes cause these mysterious deaths, Oregon Health & Science University heart researchers studied five genes already known to increase a person’s risk for sudden cardiac death. They found gene defects were responsible, but only in a minority of patients. Further research will be required to determine whether gene defects may also have caused the remaining sudden cardiac deaths. The study, "Postmortem Molecular Screening in Unexplained Sudden Death," was published in the May 5 issue of the Journal of the American College of Cardiology.

"Sudden cardiac death is a big problem. Each time we chip away at one possible solution we get closer to the finding the answer to this complex question," said Sumeet Chugh, M.D., associate professor of medicine (cardiology) in the OHSU School of Medicine, OHSU Heart Research Center scientist and director of OHSU’s Heart Rhythm Research Laboratory. "This is a story that is only just unfolding. This study confirms that our pursuit of genes involved in sudden cardiac death is still in its infancy."

Sudden death is generally defined as a death that occurs within one hour of the patient having symptoms, such as chest pain or difficult breathing. In the majority of people, this condition occurs due to an abnormality of the heart rhythm, known as arrhythmia.

For the first time, Chugh’s team looked at 12 patients who died suddenly but had structurally normal hearts. They looked for mutations in five genes that are already linked to two diseases in the heart’s electrical systems known to cause sudden death, the long QT and Brugada syndromes.

The patients with unexplained sudden cardiac death came from among 270 cases of sudden death that occurred between 1984 and 1996. The work was done in collaboration with the Jesse E. Edwards Registry of Cardiovascular Disease in St. Paul, Minn., that has more than 15,000 archived hearts. Chugh’s team has been working on the project since 1996, and an earlier analysis was published four years ago in the journal Circulation.

Genetic analysis for the present study was performed on DNA prepared from heart muscle tissue stored after being embedded in blocks of wax. Chugh’s team used genetic analysis and cellular tests to determine if any of the five genes were linked to theses deaths. In these young and otherwise healthy individuals with apparently normal hearts, there would be a high likelihood of finding a genetic cause. Of the 12 subjects, however, only two, a 32-year-old female and a 37-year-old male, were found to have a mutation in the gene KCNH2 (HERG). The other four genes, KCNQ1 (KVLQT1), SCN5A, KCNE1 and KCNE2 did not have mutations in these patients with normal hearts.

"Chugh’s discovery takes one giant step toward predicting who is vulnerable for dying suddenly and it brings hope that we may some day prevent the form of cardiac death that comes without warning," said Kent Thornburg, Ph.D., director of the OHSU Heart Research Center and professor of medicine (cardiology) in the OHSU School of Medicine.

Since February 2002 Chugh has worked with a team of researchers and community agencies to collect information on every sudden unexplained death in Multnomah County, Oregon. The Oregon Sudden Unexplained Death Study (Ore-SUDS) will be the first genome bank and data base to provide researchers with more comprehensive data about the deceased patient’s heart at the time of death. Chugh said the current five-gene study confirms the need for this more extensive registry. More information about Ore-SUDS can be found at

"For this lethal condition in which half of the people die without prior notice or warning, our quest is to predict the risk of sudden cardiac death before it happens," said Chugh.

Sudden cardiac death is a significant health threat in Oregon. The Centers for Disease Control and Prevention, which is funding Ore-SUDS, reports that more than 70 percent of cardiac deaths in Oregon are sudden, one of the highest percentages in the country. The overwhelming majority of these patients have associated coronary heart disease.

Funding for this work was provided by the American Heart Association, the Doris Duke Charitable Foundation, CDC and the National Institutes of Health.

The other study authors are: Olga Senashova, Division of Cardiology, OHSU School of Medicine; Allison Watts, Division of Cardiology, OHSU School of Medicine; Phuoc Tran, Ph.D., Department of Molecular and Medical Genetics, OHSU School of Medicine; Zhengfeng Zhou, M.D., Ph.D., Division of Molecular Medicine, OHSU School of Medicine; Qiuming Gong, M.D., Ph.D., Division of Molecular Medicine, OHSU School of Medicine; Jack Titus, M.D., Ph.D., Jesse E. Edwards Registry of Cardiovascular Disease, St. Paul, Minn.; and Susan Hayflick, M.D., Department of Molecular and Medical Genetics, OHSU School of Medicine.

Christine Pashley | OHSU
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>