Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researcher finds genetic explanations for some previously unexplained sudden cardiac deaths

07.05.2004


Further research will explore extent of genes’ role in sudden cardiac death



Imagine walking down the street, collapsing without warning and dying within minutes. According to the American Heart Association, about 250,000 Americans suffer sudden cardiac death each year, and half of them may have no prior warning. And, in 5 to 10 percent of all cases, these sudden cardiac deaths remain unexplained since the heart may have no visible abnormality.

In an effort to explore if defects in genes cause these mysterious deaths, Oregon Health & Science University heart researchers studied five genes already known to increase a person’s risk for sudden cardiac death. They found gene defects were responsible, but only in a minority of patients. Further research will be required to determine whether gene defects may also have caused the remaining sudden cardiac deaths. The study, "Postmortem Molecular Screening in Unexplained Sudden Death," was published in the May 5 issue of the Journal of the American College of Cardiology.


"Sudden cardiac death is a big problem. Each time we chip away at one possible solution we get closer to the finding the answer to this complex question," said Sumeet Chugh, M.D., associate professor of medicine (cardiology) in the OHSU School of Medicine, OHSU Heart Research Center scientist and director of OHSU’s Heart Rhythm Research Laboratory. "This is a story that is only just unfolding. This study confirms that our pursuit of genes involved in sudden cardiac death is still in its infancy."

Sudden death is generally defined as a death that occurs within one hour of the patient having symptoms, such as chest pain or difficult breathing. In the majority of people, this condition occurs due to an abnormality of the heart rhythm, known as arrhythmia.

For the first time, Chugh’s team looked at 12 patients who died suddenly but had structurally normal hearts. They looked for mutations in five genes that are already linked to two diseases in the heart’s electrical systems known to cause sudden death, the long QT and Brugada syndromes.

The patients with unexplained sudden cardiac death came from among 270 cases of sudden death that occurred between 1984 and 1996. The work was done in collaboration with the Jesse E. Edwards Registry of Cardiovascular Disease in St. Paul, Minn., that has more than 15,000 archived hearts. Chugh’s team has been working on the project since 1996, and an earlier analysis was published four years ago in the journal Circulation.

Genetic analysis for the present study was performed on DNA prepared from heart muscle tissue stored after being embedded in blocks of wax. Chugh’s team used genetic analysis and cellular tests to determine if any of the five genes were linked to theses deaths. In these young and otherwise healthy individuals with apparently normal hearts, there would be a high likelihood of finding a genetic cause. Of the 12 subjects, however, only two, a 32-year-old female and a 37-year-old male, were found to have a mutation in the gene KCNH2 (HERG). The other four genes, KCNQ1 (KVLQT1), SCN5A, KCNE1 and KCNE2 did not have mutations in these patients with normal hearts.

"Chugh’s discovery takes one giant step toward predicting who is vulnerable for dying suddenly and it brings hope that we may some day prevent the form of cardiac death that comes without warning," said Kent Thornburg, Ph.D., director of the OHSU Heart Research Center and professor of medicine (cardiology) in the OHSU School of Medicine.

Since February 2002 Chugh has worked with a team of researchers and community agencies to collect information on every sudden unexplained death in Multnomah County, Oregon. The Oregon Sudden Unexplained Death Study (Ore-SUDS) will be the first genome bank and data base to provide researchers with more comprehensive data about the deceased patient’s heart at the time of death. Chugh said the current five-gene study confirms the need for this more extensive registry. More information about Ore-SUDS can be found at www.oregonsuds.org.

"For this lethal condition in which half of the people die without prior notice or warning, our quest is to predict the risk of sudden cardiac death before it happens," said Chugh.

Sudden cardiac death is a significant health threat in Oregon. The Centers for Disease Control and Prevention, which is funding Ore-SUDS, reports that more than 70 percent of cardiac deaths in Oregon are sudden, one of the highest percentages in the country. The overwhelming majority of these patients have associated coronary heart disease.

Funding for this work was provided by the American Heart Association, the Doris Duke Charitable Foundation, CDC and the National Institutes of Health.

The other study authors are: Olga Senashova, Division of Cardiology, OHSU School of Medicine; Allison Watts, Division of Cardiology, OHSU School of Medicine; Phuoc Tran, Ph.D., Department of Molecular and Medical Genetics, OHSU School of Medicine; Zhengfeng Zhou, M.D., Ph.D., Division of Molecular Medicine, OHSU School of Medicine; Qiuming Gong, M.D., Ph.D., Division of Molecular Medicine, OHSU School of Medicine; Jack Titus, M.D., Ph.D., Jesse E. Edwards Registry of Cardiovascular Disease, St. Paul, Minn.; and Susan Hayflick, M.D., Department of Molecular and Medical Genetics, OHSU School of Medicine.

Christine Pashley | OHSU
Further information:
http://www.ohsu.edu/news/2004/050504suds.html

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>