Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds HIV protein can drive immune cells away

04.05.2004


Clue to how virus avoids immune system activity may lead to new treatment strategy



Massachusetts General Hospital (MGH) researchers may have provided another clue to the mystery of how HIV, the virus that causes AIDS, evades the defenses of the immune system. In the May issue of the Journal of Virology, a team from the Partners AIDS Research Center at MGH describes finding how a key protein that helps the virus enter its target T helper cells may also keep away the T killer cells that should destroy HIV-infected cells.

“One of the big questions in understanding HIV is why we can see immune responses that are effective in the test tube but do not eradicate the virus in the infected patient,” says Mark Poznansky, MD, PhD, of the Partners AIDS Research Center (PARC) and the MGH Infectious Disease Unit, the paper’s senior author. “We have identified a potential new mechanism by which pathogens can repel immune cells and thereby evade the immune system.”


In 2000, Poznansky and colleagues published a report that found how a protein called SDF-1, known to attract immune cells, can actually repel T cells when present in elevated quantities. SDF-1 is a chemokine, a protein normally produced to summon immune cells to the site of an injury or infection. The molecule is known to interact with a T cell receptor called CXCR4 which also is used by HIV when it binds to and enters T helper cells. Investigating whether HIV infection involves the same kind of cellular repulsion observed in the earlier study – a process the researchers dubbed “fugetaxis” – seemed a logical next step.

In a series of experiments led by Diana Brainard, MD, a research fellow in Poznansky’s lab, the team first found that while low concentration of gp120, the HIV protein that interacts with CXCR4, attracted T killer cells, higher concentrations induced the immune cells to move away. They then showed that it was the specific interaction of gp120 with CXCR4 that controlled T cell movement, and that the same repulsion could be produced specifically with T killer cells programmed to attack HIV.

The researchers then used immunized mice to look at the effects of the viral protein in vivo. One day after the mice were injected with an antigen to which they had been previously immunized, they received an additional injection of either low- or high-dose recombinant gp120 protein or saline as a control. For up to 24 hours afterwards, mice receiving the high-dose gp120 were found to have a significantly lower immune response to the antigen injection than either control mice or those that had received the low-dose gp120.

“This is the first report of fugetaxis caused by a viral gene product and could be an important way that HIV keeps the immune system at bay,” Poznansky says. “We don’t know yet if this process occurs in patients infected with HIV, but if it does, it provides a new therapeutic approach that could block this viral protein activity and allow immune cells to do their job.”

Brainard and Poznansky add that this mechanism could also be used by other viruses – including the pox viruses, papilloma viruses and herpes viruses – that remain in the body after initial infection and have proteins known to influence cellular movement. Poznansky is an assistant professor of Medicine at Harvard Medical School.

Additional co-authors are William Tharp, Elva Granado, Nicholas Miller, Alicja Trocha and Bruce Walker, MD, of MGH/PARC; Xiang-Hui Ren, MD, and Ernest Terwilliger, PhD, of Beth Israel Deaconess Medical Center; Brian Conrad, University of Michigan; and Richard Wyatt, Dana Farber Cancer Institute. The work was supported by grants from the U.S. Public Health Service and the American Foundation for AIDS Research.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | MGH
Further information:
http://www.massgeneral.org/news/releases/050304poznansky.html

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>