Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds HIV protein can drive immune cells away

04.05.2004


Clue to how virus avoids immune system activity may lead to new treatment strategy



Massachusetts General Hospital (MGH) researchers may have provided another clue to the mystery of how HIV, the virus that causes AIDS, evades the defenses of the immune system. In the May issue of the Journal of Virology, a team from the Partners AIDS Research Center at MGH describes finding how a key protein that helps the virus enter its target T helper cells may also keep away the T killer cells that should destroy HIV-infected cells.

“One of the big questions in understanding HIV is why we can see immune responses that are effective in the test tube but do not eradicate the virus in the infected patient,” says Mark Poznansky, MD, PhD, of the Partners AIDS Research Center (PARC) and the MGH Infectious Disease Unit, the paper’s senior author. “We have identified a potential new mechanism by which pathogens can repel immune cells and thereby evade the immune system.”


In 2000, Poznansky and colleagues published a report that found how a protein called SDF-1, known to attract immune cells, can actually repel T cells when present in elevated quantities. SDF-1 is a chemokine, a protein normally produced to summon immune cells to the site of an injury or infection. The molecule is known to interact with a T cell receptor called CXCR4 which also is used by HIV when it binds to and enters T helper cells. Investigating whether HIV infection involves the same kind of cellular repulsion observed in the earlier study – a process the researchers dubbed “fugetaxis” – seemed a logical next step.

In a series of experiments led by Diana Brainard, MD, a research fellow in Poznansky’s lab, the team first found that while low concentration of gp120, the HIV protein that interacts with CXCR4, attracted T killer cells, higher concentrations induced the immune cells to move away. They then showed that it was the specific interaction of gp120 with CXCR4 that controlled T cell movement, and that the same repulsion could be produced specifically with T killer cells programmed to attack HIV.

The researchers then used immunized mice to look at the effects of the viral protein in vivo. One day after the mice were injected with an antigen to which they had been previously immunized, they received an additional injection of either low- or high-dose recombinant gp120 protein or saline as a control. For up to 24 hours afterwards, mice receiving the high-dose gp120 were found to have a significantly lower immune response to the antigen injection than either control mice or those that had received the low-dose gp120.

“This is the first report of fugetaxis caused by a viral gene product and could be an important way that HIV keeps the immune system at bay,” Poznansky says. “We don’t know yet if this process occurs in patients infected with HIV, but if it does, it provides a new therapeutic approach that could block this viral protein activity and allow immune cells to do their job.”

Brainard and Poznansky add that this mechanism could also be used by other viruses – including the pox viruses, papilloma viruses and herpes viruses – that remain in the body after initial infection and have proteins known to influence cellular movement. Poznansky is an assistant professor of Medicine at Harvard Medical School.

Additional co-authors are William Tharp, Elva Granado, Nicholas Miller, Alicja Trocha and Bruce Walker, MD, of MGH/PARC; Xiang-Hui Ren, MD, and Ernest Terwilliger, PhD, of Beth Israel Deaconess Medical Center; Brian Conrad, University of Michigan; and Richard Wyatt, Dana Farber Cancer Institute. The work was supported by grants from the U.S. Public Health Service and the American Foundation for AIDS Research.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | MGH
Further information:
http://www.massgeneral.org/news/releases/050304poznansky.html

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>