Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV: a sugar shield to evade host defences

30.04.2004


The extreme diversity of human immunodeficiency virus (HIV) strains is a major obstacle to anti-AIDS vaccine elaboration or the development of new treatments against the disease. IRD scientists, working jointly with other institutes (1), used statistical methods to determine the adaptive molecular mechanisms the virus deploys to avoid neutralization by the host immune defences. This adaptive molecular evolutionary strategy, based on genetic variability, proved to be a feature common to the different HIV subtypes. The virus apparently uses the great variety of its envelope-protein receptor binding sites, which have the role of fixing large complex carbohydrate molecules in the form of glycans, to provide protection against the host’s antibodies. These sugars are large structures that apparently block the way of human antibodies that would otherwise fix on to the virus, without hindering these envelope proteins in their function of attaching the virus to the host cell. These results open the way to potential ways of tackling AIDS.

In humans, the AIDS virus HIV manifests extreme genetic variability. It is particularly virulent, probably because its introduction into populations is recent (2). It has a potential for rapid evolution, at both population and individual scales, owing to a mutation rate among the highest in the living world, and to its recombination capacity. This high evolutionary potential is one of the major obstacles hindering the development of an effective vaccine. Starting from the principle that this mutation-based evolution of the virus is a response to selective pressures exerted by the host immune response (thought to be the dominant evolutionary force) , IRD researchers and their project partners (1) attempted to determine, at the molecular scale, the adaptive mechanisms at work and their comparative occurrence between the different HIV groups and subtypes. They used powerful statistical techniques (the codon-based maximum likelihood method) to investigate and compare the evolution of 3 major genes of the HIV genome, gag, pol and env. They did this for several HIV subtypes. They were able to confirm that the virus followed a dynamic adaptation strategy, based on the deployment of a shield of complex carbohydrates (glycans) to block antibody binding and thus provide protection against the host immune response.

Among the mutations randomly affecting the genome as a whole, those which influence the genes essential for viral survival and multiplication appear to be systematically selected against (negative selection). The gag gene, which codes for the proteins of the capsid (containing the genome and the viral proteins) and the pol gene, which allows synthesis of enzymes essential for virus replication, thus appear highly conserved and stable from one subtype to another.



However, the env gene, which codes for the virus’s envelope proteins, targets of the host’s immune system antibodies, appears to contain positively selected sites: at the point on the genome where this gene is located, the mutations would be maintained as carriers of evolutionary advantage. They would allow diversification of the proteins expressed which, in this way, would no longer be recognized by the antibodies. However, these same proteins must conserve their vital function of binding the viral particle to the host-cell membrane (the CD4 of the immune system), which implies that on the env gene, the virus would manage to reconcile two opposing selection forces, one diversifying, the other conservative.

The research team used statistical significance tests to identify this positive selection at the scale of the protein expressed by the env gene, determine precisely the sites where it operates in the amino-acid sequence and compare the distribution of these sites in the 6 HIV subtypes studied. The results obtained showed that the mutations selected are not distributed randomly, but on given amino acid sites and in an identical way in the 6 HIV subtypes. These variants could all therefore be subject to the same selection pressure exerted by the immune system which, conversely, would react in the same way to each of these subtypes. Moreover, these positive selection sites appeared not be correlated with the virus recognition sites by the antibodies (epitopes), but with the glycosylation sites on the protein surface to which the sugars are bound. In this way a recent hypothetical model (3) envisaging the use by the virus of extremely large complex sugars to evade the host’s immune system. These sugars fix on to the glycosylation sites, creating a spatial mask, and prevent the antibodies from binding to the virus recognition sites.

Selection pressure by the immune system acts on these sites. They appear to change their spatial configuration and thereby the position of the sugar molecules. Thanks to this modifiable sugar shield, the virus evades the antibodies without harming its ability to fix on to host cells. This investigation confirmed the theoretical model involving a common viral strategy for the whole range of HIV subtypes tested. It therefore provided information of vital importance for the development of new treatments and, possibly, of a candidate vaccine against Aids, viable for all HIV strains. Other research work is planned aiming to reinforce these results and further the studies on the variability in the primates of the SIVs, which originated the ancestors of human HIVs.

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/us/actualites/fiches/2004/198.htm

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>