Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-based screen sorts cancer cases, say Stanford researchers

29.04.2004


Six genes may hold the answer to whether a person’s lymphoma is likely to respond to treatment. This finding by researchers at Stanford University School of Medicine could result in the first gene-based screen to identify people who need the most aggressive therapy.



When a person is diagnosed with diffuse large-B-cell lymphoma, doctors use a group of indicators called the International Prognostic Index, or IPI, which includes a person’s age, tumor stage and blood markers to decide how to treat the cancer. Those with the highest IPI scores get the most aggressive therapy. However, two people with the same score may still react differently to treatment. One thought has been that a genetic screen may fine-tune the distinction between the most aggressive and least aggressive cancers.

"It makes a big difference in your treatment decisions if you think you have a high chance of success or if you don’t," said Ronald Levy, MD, the Robert K. and Helen K. Summy Professor, who led the study. He said if doctors know a patient isn’t likely to respond well to standard therapy, the patient may be a candidate for novel therapies undergoing clinical trials.


"New therapies are usually tested in people who have failed the standard therapy," Levy said. "If you know in advance who won’t respond well, you can treat them more aggressively or include these patients in trials of the many promising, new targeted therapies."

Over the past five years groups of researchers have used microarrays, which take a snapshot of which genes are active in different tissues, to find large groups of genes that predict a person’s survival. These studies have resulted in huge lists of mostly non-overlapping genes. Not only are there too many genes to be screened by most medical labs, the research groups haven’t agreed on which genes should be part of those screens.

Levy and his colleagues narrowed the list of potentially informative genes down to the 36 most likely candidates. They then analyzed how active those genes were in 66 tumor samples from people with diffuse large-B-cell lymphoma who had been treated at Stanford. The results of this work are published in the April 29 issue of the New England Journal of Medicine.

On its own, none of the genes predicted how long a patient lived after treatment. But six of the genes taken together could predict how long the 66 patients survived. Researchers then tested the predictive power of those six genes in patients who participated in two previous microarray studies. In this combined group of 298 patients the six genes once again distinguished between patients who responded well to treatment and those who did not.

Rather than using microarray technology to analyze the genes’ activity, Levy and his colleagues worked with scientists at Applied Biosystems Inc. to develop a screen using a technique called RT-PCR. This approach would be easier for medical labs, which already use RT-PCR for other disease tests. Levy said although microarrays and RT-PCR give similar information, the new test is more likely to become widely used if it is easy to incorporate into existing medical labs. "You want to introduce something that helps people do what they are doing now - but better," he said.

He added that the group still needs to check how well the six genes discriminate between good and bad responders in additional groups of patients, especially those who are receiving therapies that weren’t available when the original patients were treated. If the test can still predict those who need the most aggressive treatment, the researchers will move forward with making the screen widely available. He said doctors would likely combine information from the IPI clinical index with results from the six-gene screen to decide how best to treat the patient.

Postdoctoral scholar Izidore Lossos, MD, was the first author on the paper. Other collaborators include Debra Czerwinski, research assistant; Ash Alizadeh, MD, PhD, postdoctoral scholar; Robert Tibshirani, PhD, professor of health research and policy; and David Botstein, PhD, who was professor of biochemistry at Stanford until last year.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>