Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene-based screen sorts cancer cases, say Stanford researchers


Six genes may hold the answer to whether a person’s lymphoma is likely to respond to treatment. This finding by researchers at Stanford University School of Medicine could result in the first gene-based screen to identify people who need the most aggressive therapy.

When a person is diagnosed with diffuse large-B-cell lymphoma, doctors use a group of indicators called the International Prognostic Index, or IPI, which includes a person’s age, tumor stage and blood markers to decide how to treat the cancer. Those with the highest IPI scores get the most aggressive therapy. However, two people with the same score may still react differently to treatment. One thought has been that a genetic screen may fine-tune the distinction between the most aggressive and least aggressive cancers.

"It makes a big difference in your treatment decisions if you think you have a high chance of success or if you don’t," said Ronald Levy, MD, the Robert K. and Helen K. Summy Professor, who led the study. He said if doctors know a patient isn’t likely to respond well to standard therapy, the patient may be a candidate for novel therapies undergoing clinical trials.

"New therapies are usually tested in people who have failed the standard therapy," Levy said. "If you know in advance who won’t respond well, you can treat them more aggressively or include these patients in trials of the many promising, new targeted therapies."

Over the past five years groups of researchers have used microarrays, which take a snapshot of which genes are active in different tissues, to find large groups of genes that predict a person’s survival. These studies have resulted in huge lists of mostly non-overlapping genes. Not only are there too many genes to be screened by most medical labs, the research groups haven’t agreed on which genes should be part of those screens.

Levy and his colleagues narrowed the list of potentially informative genes down to the 36 most likely candidates. They then analyzed how active those genes were in 66 tumor samples from people with diffuse large-B-cell lymphoma who had been treated at Stanford. The results of this work are published in the April 29 issue of the New England Journal of Medicine.

On its own, none of the genes predicted how long a patient lived after treatment. But six of the genes taken together could predict how long the 66 patients survived. Researchers then tested the predictive power of those six genes in patients who participated in two previous microarray studies. In this combined group of 298 patients the six genes once again distinguished between patients who responded well to treatment and those who did not.

Rather than using microarray technology to analyze the genes’ activity, Levy and his colleagues worked with scientists at Applied Biosystems Inc. to develop a screen using a technique called RT-PCR. This approach would be easier for medical labs, which already use RT-PCR for other disease tests. Levy said although microarrays and RT-PCR give similar information, the new test is more likely to become widely used if it is easy to incorporate into existing medical labs. "You want to introduce something that helps people do what they are doing now - but better," he said.

He added that the group still needs to check how well the six genes discriminate between good and bad responders in additional groups of patients, especially those who are receiving therapies that weren’t available when the original patients were treated. If the test can still predict those who need the most aggressive treatment, the researchers will move forward with making the screen widely available. He said doctors would likely combine information from the IPI clinical index with results from the six-gene screen to decide how best to treat the patient.

Postdoctoral scholar Izidore Lossos, MD, was the first author on the paper. Other collaborators include Debra Czerwinski, research assistant; Ash Alizadeh, MD, PhD, postdoctoral scholar; Robert Tibshirani, PhD, professor of health research and policy; and David Botstein, PhD, who was professor of biochemistry at Stanford until last year.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

Amy Adams | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>