Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists correct cystic fibrosis defect in mice with turmeric extract


Scientists at The Hospital for Sick Children (Sick Kids) and Yale University School of Medicine have found that a compound in the spice turmeric corrects the cystic fibrosis defect in mice. This research is reported in the April 23, 2004 issue of the journal Science.

Cystic fibrosis (CF) is fatal genetic disease in which thick mucous clogs the lungs and the pancreas due to problems with the secretion of ions and fluid by cells of the airways and gastrointestinal tract. Normal secretion depends upon the function of a protein called CFTR (cystic fibrosis transmembrane conductance regulator), which was discovered at The Hospital for Sick Children in 1989. Mutations in the gene encoding CFTR are responsible for cystic fibrosis. In the most common form of cystic fibrosis, the CFTR protein is trapped inside the cell, and is therefore unable to carry out its proper function at the cell surface.

The laboratories of Drs. Marie Egan, Michael Caplan (both at Yale University School of Medicine), and Gergely Lukacs (Sick Kids) demonstrated in a mouse model that curcumin treatment can release the mutant CFTR protein from this inappropriate compartment inside the cell and allow it to reach its proper destination, where it is able to function. Furthermore, oral curcumin treatment was able to correct characteristic cystic fibrosis defects in a mouse model of the disease. Curcumin is a compound found in turmeric, and is what gives the spice its bright yellow colour and strong taste.

"We were able to prove at the cellular level what the Yale group observed in the mouse model of the disease," said Dr. Gergely Lukacs, a senior scientist in the Cell and Lung Biology Research Programs at Sick Kids and associate professor in the Department of Laboratory Medicine and Pathobiology at the University of Toronto. "After having received curcumin treatment, mice with the genetic defect that causes CF survived at a rate almost equal to normal mice. The CFTR protein also functioned normally in the cells lining the nose and rectum, which are areas of the body affected by cystic fibrosis."

Dr. Michael Caplan, the study’s senior author and professor in the Department of Cellular and Molecular Physiology at Yale University School of Medicine, said: "In the next phase of this research, we will work to determine precisely how curcumin is achieving these effects and to optimize its potential as a possible drug. Plans are underway for a human clinical trial of curcumin, which will be carried out under the auspices of Cystic Fibrosis Foundation Therapeutics, Inc."

Cystic Fibrosis Foundation Therapeutics, Inc. (CFFT), the nonprofit drug discovery and development affiliate of the Cystic Fibrosis Foundation (US), is working with Seer Pharmaceuticals on a Phase I clinical trial of curcumin to assess safety and dosage parameters in humans. The trial will be conducted through CFFT’s Therapeutics Network in four to six sites and will include approximately 25 patients.

This research was supported by the Canadian Cystic Fibrosis Foundation, the Canadian Institutes of Health Research, The Hospital for Sick Children Foundation, Alyward Family/Pitney Bowes Gift Fund, the US Cystic Fibrosis Foundation, the US National Institutes of Health, and a sponsored research grant from Seer Pharmaceuticals to Yale University.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
(416) 813-5046

Chelsea Gay, Public Affairs
The Hospital for Sick Children
(416) 813-7654 ext. 1042

Laura Greer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>