Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists correct cystic fibrosis defect in mice with turmeric extract

23.04.2004


Scientists at The Hospital for Sick Children (Sick Kids) and Yale University School of Medicine have found that a compound in the spice turmeric corrects the cystic fibrosis defect in mice. This research is reported in the April 23, 2004 issue of the journal Science.

Cystic fibrosis (CF) is fatal genetic disease in which thick mucous clogs the lungs and the pancreas due to problems with the secretion of ions and fluid by cells of the airways and gastrointestinal tract. Normal secretion depends upon the function of a protein called CFTR (cystic fibrosis transmembrane conductance regulator), which was discovered at The Hospital for Sick Children in 1989. Mutations in the gene encoding CFTR are responsible for cystic fibrosis. In the most common form of cystic fibrosis, the CFTR protein is trapped inside the cell, and is therefore unable to carry out its proper function at the cell surface.

The laboratories of Drs. Marie Egan, Michael Caplan (both at Yale University School of Medicine), and Gergely Lukacs (Sick Kids) demonstrated in a mouse model that curcumin treatment can release the mutant CFTR protein from this inappropriate compartment inside the cell and allow it to reach its proper destination, where it is able to function. Furthermore, oral curcumin treatment was able to correct characteristic cystic fibrosis defects in a mouse model of the disease. Curcumin is a compound found in turmeric, and is what gives the spice its bright yellow colour and strong taste.



"We were able to prove at the cellular level what the Yale group observed in the mouse model of the disease," said Dr. Gergely Lukacs, a senior scientist in the Cell and Lung Biology Research Programs at Sick Kids and associate professor in the Department of Laboratory Medicine and Pathobiology at the University of Toronto. "After having received curcumin treatment, mice with the genetic defect that causes CF survived at a rate almost equal to normal mice. The CFTR protein also functioned normally in the cells lining the nose and rectum, which are areas of the body affected by cystic fibrosis."

Dr. Michael Caplan, the study’s senior author and professor in the Department of Cellular and Molecular Physiology at Yale University School of Medicine, said: "In the next phase of this research, we will work to determine precisely how curcumin is achieving these effects and to optimize its potential as a possible drug. Plans are underway for a human clinical trial of curcumin, which will be carried out under the auspices of Cystic Fibrosis Foundation Therapeutics, Inc."


Cystic Fibrosis Foundation Therapeutics, Inc. (CFFT), the nonprofit drug discovery and development affiliate of the Cystic Fibrosis Foundation (US), is working with Seer Pharmaceuticals on a Phase I clinical trial of curcumin to assess safety and dosage parameters in humans. The trial will be conducted through CFFT’s Therapeutics Network in four to six sites and will include approximately 25 patients.

This research was supported by the Canadian Cystic Fibrosis Foundation, the Canadian Institutes of Health Research, The Hospital for Sick Children Foundation, Alyward Family/Pitney Bowes Gift Fund, the US Cystic Fibrosis Foundation, the US National Institutes of Health, and a sponsored research grant from Seer Pharmaceuticals to Yale University.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
(416) 813-5046
laura.greer@sickkids.ca

Chelsea Gay, Public Affairs
The Hospital for Sick Children
(416) 813-7654 ext. 1042
chelsea.gay@sickkids.ca

Laura Greer | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>