Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploiting Nature’s Weapons in the Fight Against Diabetes

24.03.2004


Scientists at the University of Ulster are harnessing molecules produced naturally in the body to tackle one of the world’s major health problems - diabetes.



Their novel approach involves bioengineering gut peptides – molecules produced in the human intestine and released in response to feeding – to prolong their duration of action and, therefore, make them work more effectively.

The research by the internationally-recognised Diabetes Research Group at the University’s Coleraine campus could lead to the development of new therapies to combat Type 2 diabetes.


Findings of the Group’s research were presented recently to the Diabetes UK Annual Professional Conference in England.

In essence, the Group is exploring ways to make new therapies based on the architecture of gut peptide molecules. Using bioengineering technologies the scientists are able to produce long-acting molecules, which are not quickly degraded in the circulation, giving them more time to perform their tasks which include stimulation of insulin secretion and glucose metabolism as well as suppression of appetite.

The anticipated outcome is that these new bioengineered molecules will lower the blood glucose levels – the desired effect of any anti-diabetic drug.

Dr Victor Gault, a senior member of the Diabetes Research Group, said: “There are more than 150m reported cases of diabetes worldwide and, potentially, an equal number who remain undiagnosed. The incidence of diabetes is set to increase to 220m by 2010 with a predicted doubling in the number of reported cases within 20 years. In the US alone, the direct cost of treatment is more than $44bn, prompting a concerted research effort to find new ways to treat, cure and even prevent diabetes.

“Our research highlights the fact that perhaps nature knows best when it comes to regulating human metabolism and overcoming progressive disease processes.

“The onset and progression of Type 2 diabetes is closely associated with the increasing sedentary lifestyle of modern Western society which largely accounts for the huge rise in the incidence of obesity. The diverse range of important biological actions would support the view that bioengineered peptides may be particularly useful in the treatment of obesity-related diabetes.

“Traditionally therapies for Type 2 diabetes have focussed on single drug targets. In the future our bioengineered peptides could be used alone or together with insulin or other established anti-diabetic drugs, thus increasing the therapeutic arsenal of agents that can be used to combat diabetes”, Dr Gault added.

One of the bonuses of using natural molecules lies in the fact that they are generally better tolerated by the body than synthetically manufactured therapeutic agents.

David Young | University of Ulster
Further information:
http://www.ulster.ac.uk/news/releases/2004/1105.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>