Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers a step further in Type 1 diabetes treatment

23.02.2004


Single Infusion of islet cells surpasses previous success



esearchers at the University of Minnesota’s Diabetes Institute for Immunology and Transplantation (DIIT) and the University of California San Francisco (UCSF) Diabetes Center have achieved insulin independence in four of six patients with long-term Type 1 diabetes using one infusion of insulin-producing "islet" cells from a single donor pancreas.

Individuals in whom Type 1 diabetes was complicated by hypoglycemic unawareness participated in this trial. The combination of improved islet preparation techniques and optimized recipient immunosuppression contributed to the successful study outcome. Insulin independence has now been maintained for more than one year in four recipients, for more than two years in three recipients, and for more than three years in two recipients. The study, funded primarily by the Juvenile Diabetes Research Foundation, is published in the March issue of the American Journal of Transplantation.


"This success builds upon other recent successes in islet transplantation and marks a critical step in developing islet transplants into a vital treatment option for people with Type 1 diabetes", said Dr. Bernhard Hering, associate professor of surgery, holder of the Eunice L. Dwan Diabetes Research Chair at the University of Minnesota, and principal investigator of the study.

"This trial also brings us a step closer to minimizing the requirements for immunosuppression in islet transplant recipients," said Dr. Jeffrey Bluestone, professor of medicine and director of the Diabetes Center at UCSF, and co-principal investigator of the study.

Dr. Bluestone developed the new generation anti-CD3 monoclonal antibody that was administered in this trial during the first two weeks after transplant. This antibody is directed against the subset of white blood cells that cause Type 1 diabetes and mediate rejection of transplants. Study participants received two other immunosuppression drugs.

In a subsequent trial supported by the NIH Immune Tolerance Network (www.immunetolerance.org), the research team at the University of Minnesota and UCSF will test whether maintenance immunosuppressive medication can be minimized or even discontinued in islet transplant recipients given the anti-CD3 antibody.

"The demonstration in this pilot clinical trial that insulin independence can be induced in Type 1 diabetes with single donor islet transplants is quite important because it will allow an increased number of islet transplants to be performed, and at the same time, will decrease the risk and cost of the procedure", Richard Insel, M.D., executive vice president of research at the Juvenile Diabetes Research Foundation.


The Diabetes Institute for Immunology and Transplantation (DIIT) was formed in 1994 to capitalize on the University of Minnesota’s historic leadership in pancreas and islet cell transplantation. Both of these advanced treatments for diabetes were pioneered here. Under the leadership of David E.R. Sutherland, M.D., Ph.D., both procedures have continued to be refined. The University of Minnesota is the home of the world’s oldest, largest pancreas transplant program, having performed over 1,500 pancreas transplants, which are frequently preceded, accompanied or succeeded by a kidney transplant.

Molly Portz | EurekAlert!
Further information:
http://www.blackwellpublishing.com,
http://www.diabetesinstitute.org.
http://www.immunetolerance.org

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>