Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, non-radioactive screen for antimalarial compounds

17.02.2004


Molecular Probes technology powers breakthrough in drug discovery



Panama’s International Cooperative Biodiversity Group (ICBG) announces the development of a new test for identification of antimalarial compounds with wide applicability in the developing world. The assay for plant-derived compounds also can be used to detect anti-plasmodial compounds from synthetic or natural sources. Initial results of the research are published in the American Journal of Tropical Medicine and Hygiene under the title "A Novel DNA-Based Microfluorometric Method to Evaluate Antimalarial Drug Activity".

The assay is based on fluorochrome binding to parasite double stranded DNA. Pico Green, a powerful fluorochrome developed by Invitrogen Corporation’s Molecular Probes business enables detection of the malaria parasite in cell culture without the need for radioactive materials used in current methods. The new assay will be attractive in developing countries where access and disposal of radioactive tracers is prohibitively expensive as well as in the many developed-world labs that prefer non-radioactive reagents.


The new method will be attractive to researchers because it is relatively inexpensive, easy to implement in biodiverse developing countries and most importantly, safe according to Yolanda Corbett who developed the assay in Dr. Eduardo Ortega’s lab: "A fluorescent DNA probe is safer and is a novel approach in the sense that red blood cells don’t have DNA, so we could quantify the parasite in microtiter plates."

Malaria kills more than a million people each year in Africa alone and threatens nearly 40 percent of the world’s population. The major impediment to malaria control is the cost and distribution of antimalarial drugs. Every year, antimalarial treatments become less effective as drug resistant strains of the malaria parasite develop, making the discovery of new antimalarials essential in this fight against the disease.

"The most important aspect of the work we do at Invitrogen is speeding and improving the research process itself," explained August Sick, General Manager of Molecular Probes. "Rather than merely producing a tool to do the job, we look for ways to provide researchers solutions that help them make their work more cost effective, rapid and safe."

The Panama ICBG is one of several experimental efforts funded by the United States National Institutes of Health, the National Science Foundation and the Department of Agriculture to promote drug discovery and technology transfer between nations.

"A major goal of the Panama ICBG program is the transfer and development of technologies necessary to promote research into tropical parasitic diseases such as malaria, Chagas disease and leishmaniasis, especially in biodiversity rich countries where these diseases affect three billion people," said Dr. Todd Capson at the Smithsonian Tropical Research Institute. "The ability to screen fresh plant extracts in biodiverse regions will drastically reduce the price tag for drug discovery, result in a cadre of trained professionals and buttress local and international conservation efforts in developing countries where investment in research is still viewed as a risky proposition."

Capson explained that Panama is an ideal setting for this research as a biologically diverse, developing country with a talented pool of researchers and where malaria strains resistant to conventional treatments pose a growing threat.

In addition to the research being done in Panama, researchers in Bolivia, Italy and Madagascar have adopted the new technique. Michel Ratsimbason, researcher from Madagascar’s National Pharmaceutical Research Center (CNARP), visited Panama in a South-South technology transfer program between ICBG Madagascar and ICBG Panama: "We trained in the use of the ds-DNA fluorescence technique. The technique allows us to screen new substances to fight malaria which affects and kills so many people in Madagascar and Africa, where parasite resistance to chlorquine is gaining ground."


About ICBG

The International Cooperative Biodiversity Groups (ICBG) Program is a unique effort that addresses the interdependent issues of drug discovery, biodiversity conservation, and sustainable economic growth. Funding for this program has been provided by six components of the National Institutes of Health (NIH), the Biological Sciences Directorate of the National Science Foundation (NSF) and the Foreign Agriculture Service of the USDA. The cooperating NIH components are the Fogarty International Center (FIC), National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA) and the National Heart, Lung, and Blood Institute (NHLBI).

About Invitrogen

Invitrogen Corporation (Nasdaq:IVGN) provides products and services that support academic and government research institutions and pharmaceutical and biotech companies worldwide in their efforts to improve the human condition. The company provides essential life science technologies for disease research, drug discovery, and commercial bio-production. Invitrogen’s own research and development efforts are focused on breakthrough innovation in all major areas of biological discovery including functional genomics, proteomics, bio-informatics and cell biology -- placing Invitrogen’s products in nearly every major laboratory in the world. Founded in 1987, Invitrogen is headquartered in Carlsbad, California and conducts business in more than 70 countries around the world. The company globally employs approximately 3,000 scientists and other professionals. For more information about Invitrogen visit the company’s web site at www.invitrogen.com

About STRI

The Smithsonian Tropical Research Institute is an international research center established in Panama by the Smithsonian Institution to increase knowledge of the past, present and future of tropical biodiversity and its importance to humanity. For more than 90 years, researchers, students and associates have conducted research in forest and marine habitats in Panama and at other sites throughout tropical regions of the world.

Beth King | EurekAlert!
Further information:
http://www.si.edu/
http://www.stri.org
http://www.fic.nih.gov/programs/icbg.html

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>