Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies offer new insight into HIV vaccine development

17.02.2004


David Watkins, researcher with the Medical School and the Wisconsin Regional Primate Research Center, studies SIV viral infection at a microscope in his research lab. Photo by: Jeff Miller


MADISON-Mutations that allow AIDS viruses to escape detection by the immune system may also hinder the viruses’ ability to grow after transmission to new hosts, scientists at the University of Wisconsin-Madison announced this week in the journal Nature Medicine.

The discovery may help researchers design vaccines that exploit the notorious mutability of HIV by training the immune system to attack the virus where it’s most vulnerable. The work appears alongside a study of HIV-infected people performed by scientists at Harvard Medical School and Oxford University. The Wisconsin study’s lead author, Thomas Friedrich, is a doctoral student working under the direction of David Watkins, professor of pathology at UW-Madison and senior scientist at the Wisconsin National Primate Research Center.

Watkins’ team produced an "escaped" AIDS virus that mimicked events that occur in HIV infection when the virus mutates to become unrecognizable to killer cells known as cytotoxic T-lymphocytes, or CTL. The researchers found that the mutant virus did not grow as well as the original strain. The mutations, while allowing the virus to escape immune recognition, had also weakened the virus. To model the transmission of escaped viruses between people, the team inoculated monkeys with the mutant virus strain. They discovered that most of the escape mutations were lost as the virus grew in the monkeys, often restoring original sequences that killer cells could recognize.



Some scientists have theorized that HIV could adapt to the human immune system as the AIDS epidemic develops, becoming less and less recognizable. Watkins said that his group’s findings should help allay these fears.

The UW-Madison group has been studying immunity to AIDS viruses since the early 1990s. Most recently, the researchers have been studying the ways in which viruses mutate to "escape" recognition by the body’s killer cells. Killer cells are white blood cells that perform immune "surveillance" throughout the body, detecting infected cells and eliminating them before the virus can spread.

"Over 40 million people are now infected with HIV worldwide, and a vaccine is urgently needed," Watkins said. "We hope that our findings can be used to help design vaccines that show killer cells how to fight the virus most effectively."


###
-- Jordana Lenon 608-263-7024, jlenon@primate.wisc.edu

Jordana Lenon | U of Wisconsin-Madison
Further information:
http://www.news.wisc.edu/9451.html

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>