Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies offer new insight into HIV vaccine development

17.02.2004


David Watkins, researcher with the Medical School and the Wisconsin Regional Primate Research Center, studies SIV viral infection at a microscope in his research lab. Photo by: Jeff Miller


MADISON-Mutations that allow AIDS viruses to escape detection by the immune system may also hinder the viruses’ ability to grow after transmission to new hosts, scientists at the University of Wisconsin-Madison announced this week in the journal Nature Medicine.

The discovery may help researchers design vaccines that exploit the notorious mutability of HIV by training the immune system to attack the virus where it’s most vulnerable. The work appears alongside a study of HIV-infected people performed by scientists at Harvard Medical School and Oxford University. The Wisconsin study’s lead author, Thomas Friedrich, is a doctoral student working under the direction of David Watkins, professor of pathology at UW-Madison and senior scientist at the Wisconsin National Primate Research Center.

Watkins’ team produced an "escaped" AIDS virus that mimicked events that occur in HIV infection when the virus mutates to become unrecognizable to killer cells known as cytotoxic T-lymphocytes, or CTL. The researchers found that the mutant virus did not grow as well as the original strain. The mutations, while allowing the virus to escape immune recognition, had also weakened the virus. To model the transmission of escaped viruses between people, the team inoculated monkeys with the mutant virus strain. They discovered that most of the escape mutations were lost as the virus grew in the monkeys, often restoring original sequences that killer cells could recognize.



Some scientists have theorized that HIV could adapt to the human immune system as the AIDS epidemic develops, becoming less and less recognizable. Watkins said that his group’s findings should help allay these fears.

The UW-Madison group has been studying immunity to AIDS viruses since the early 1990s. Most recently, the researchers have been studying the ways in which viruses mutate to "escape" recognition by the body’s killer cells. Killer cells are white blood cells that perform immune "surveillance" throughout the body, detecting infected cells and eliminating them before the virus can spread.

"Over 40 million people are now infected with HIV worldwide, and a vaccine is urgently needed," Watkins said. "We hope that our findings can be used to help design vaccines that show killer cells how to fight the virus most effectively."


###
-- Jordana Lenon 608-263-7024, jlenon@primate.wisc.edu

Jordana Lenon | U of Wisconsin-Madison
Further information:
http://www.news.wisc.edu/9451.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>