Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of drug development

17.02.2004


In this month’s essay, Tim Hubbard and Jamie Love argue that we need a better way to research and develop new drugs. They contend that the existing system for drug development--rooted within the pharmaceutical industry--is inefficient and unsustainable. Drugs are too expensive and are beyond the reach of many people in the developed as well as the developing world.



The inadequacies in the current system, suggest Hubbard and Love, are a consequence of a business model that uses a single payment to cover both the costs of manufacture, marketing and sales of a drug and the cost of the research and development (R&D) carried out by manufacturers to discover it. The current system is supported by a vigorously-enforced intellectual property regime, which protects the financial interests of companies and reaches across borders so that poorer countries cannot develop cheaper versions of the drug.

Aside from the inadequate availability and high price of drugs, other unwelcome side-effects of the existing business model are a lack of information sharing amongst researchers, and a consequent reduction in the pace of discovery. There are also strong incentives to develop drugs that have little if any increase in efficacy over existing drugs--so-called me-too drugs. And it is not surprising that many of the major global health challenges, which tend to affect poorer nations, receive short shrift from companies that focus their attention on more lucrative health markets.


So what’s to be done? Hubbard and Love propose that the markets for R&D and the markets for products should be separated. Researchers and drug developers would be compensated, but not through a marketing monopoly. Large cash prizes to successful firms or non-profit drug developers, direct public sector involvement in drug development, new open collaborative development models, or government imposed research mandates would be possible economic models for funding drug development. Money could be raised and managed through taxes and traditional government institutions like the NIH, or through "bottom up" mechanisms such as employee contributions to competitive intermediates that fund R&D--analogous to pension funds--or through other approaches.

Such a system would reduce the influence of intellectual property rights, and lead to much greater openness in the area of drug research. Competition would still exist for the manufacture and distribution of drugs, but prices would inevitably drop. There are many obstacles and challenges to the development of the new drug R&D market, but Hubbard and Love believe that the economics can be worked out and will "change the world," by greatly expanding access to new medicines and promoting a more efficient system of drug development that addresses real health priorities.


Citation: Hubbard T, Love J (2004) A New Trade Framework for Global Healthcare R&D. PLoS Biol 2(2): e52 DOI: 10.1371/journal.pbio.0020052.

CONTACT:
Tim Hubbard
Wellcome Trust Sanger Institute
Cambridge, Cambridgeshire CB10 1SA
United Kingdom
44-1223-494983
th@sanger.ac.uk

Barbara Cohen | EurekAlert!
Further information:
http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020052
http://www.plos.org/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>