Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of drug development

17.02.2004


In this month’s essay, Tim Hubbard and Jamie Love argue that we need a better way to research and develop new drugs. They contend that the existing system for drug development--rooted within the pharmaceutical industry--is inefficient and unsustainable. Drugs are too expensive and are beyond the reach of many people in the developed as well as the developing world.



The inadequacies in the current system, suggest Hubbard and Love, are a consequence of a business model that uses a single payment to cover both the costs of manufacture, marketing and sales of a drug and the cost of the research and development (R&D) carried out by manufacturers to discover it. The current system is supported by a vigorously-enforced intellectual property regime, which protects the financial interests of companies and reaches across borders so that poorer countries cannot develop cheaper versions of the drug.

Aside from the inadequate availability and high price of drugs, other unwelcome side-effects of the existing business model are a lack of information sharing amongst researchers, and a consequent reduction in the pace of discovery. There are also strong incentives to develop drugs that have little if any increase in efficacy over existing drugs--so-called me-too drugs. And it is not surprising that many of the major global health challenges, which tend to affect poorer nations, receive short shrift from companies that focus their attention on more lucrative health markets.


So what’s to be done? Hubbard and Love propose that the markets for R&D and the markets for products should be separated. Researchers and drug developers would be compensated, but not through a marketing monopoly. Large cash prizes to successful firms or non-profit drug developers, direct public sector involvement in drug development, new open collaborative development models, or government imposed research mandates would be possible economic models for funding drug development. Money could be raised and managed through taxes and traditional government institutions like the NIH, or through "bottom up" mechanisms such as employee contributions to competitive intermediates that fund R&D--analogous to pension funds--or through other approaches.

Such a system would reduce the influence of intellectual property rights, and lead to much greater openness in the area of drug research. Competition would still exist for the manufacture and distribution of drugs, but prices would inevitably drop. There are many obstacles and challenges to the development of the new drug R&D market, but Hubbard and Love believe that the economics can be worked out and will "change the world," by greatly expanding access to new medicines and promoting a more efficient system of drug development that addresses real health priorities.


Citation: Hubbard T, Love J (2004) A New Trade Framework for Global Healthcare R&D. PLoS Biol 2(2): e52 DOI: 10.1371/journal.pbio.0020052.

CONTACT:
Tim Hubbard
Wellcome Trust Sanger Institute
Cambridge, Cambridgeshire CB10 1SA
United Kingdom
44-1223-494983
th@sanger.ac.uk

Barbara Cohen | EurekAlert!
Further information:
http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020052
http://www.plos.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>