Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most complete human blood-plasma proteome map to date unveiled

16.02.2004


Researchers have identified an astounding 4,000 distinctive proteins in human blood plasma, a critical step toward cataloging biological markers for early diagnosis of cancer and other diseases.



"This is 10 times the number of proteins identified" and previously reported, said Richard D. Smith, a senior scientist and Battelle Fellow at the Department of Energy’s Pacific Northwest National Laboratory. The proteomics advance was announced Saturday at the American Association for the Advancement of Science annual meeting.

"Because there is huge interest in determining their utility as biomarkers for different diseases, I want to emphasize the large numbers of proteins now identified in plasma," said Smith, a Battelle Fellow at PNNL and director of the National Institutes of Health Proteomics Research Resource Center at PNNL’s Richland, Wash., campus.


"The large coverage is important because proteins from distressed cells in essentially any tissue that can leak into the blood stream might be found in plasma, given sufficiently sensitive methods of analysis," Smith said. "Thus, there is significant interest in cataloging the range of proteins present in blood plasma as potential biomarkers of disease states based upon their abundance change from normal levels."

A fast and sensitive proteomic analysis is necessary for such massive screenings of bodily fluids as needed to confidently identify biomarkers and to bring into sharp focus proteins that are signs of trouble to come.

Proteomics is akin to reading the proteins like tea leaves, minus the mystic, and generally involves measurements aimed at determining what proteins are present and at what levels. Smith’s group has developed an advanced form of mass spectrometry for this purpose: Fourier transform ion cyclotron resonance (FTICR). PNNL’s instrumentation can ransack a sample for proteins that defy detection by other means, having recently pushed the detection limits to about 10 zeptomoles, or on the order of 6,000 individual molecules, "allowing the detection of many previously undetected lower level proteins in plasma that are then candidates for biomarkers," Smith said.

The plasma-proteome advance is the latest in a string of milestones for the PNNL proteomics program over the past six months, as PNNL gears up to compete for the DOE’s multimillion-dollar Whole Proteome Analysis facility. This past summer the FTICR instrumentation developed at PNNL was named one of the 100 top inventions of the year by R&D Magazine, and in October NIH granted PNNL more than $10 million to establish its Research Resource center for proteomics.

PNNL is a DOE Office of Science research center that advances the fundamental understanding of complex systems and provides science-based solutions in national security, energy, chemistry, the biological sciences and environmental quality. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-08.htm

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>