Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN research indicates why radiation therapy reduces bone cancer pain

02.02.2004


New findings may pave way for improved pain relief methods



Although physicians administer radiation therapy to relieve bone cancer pain in more than 100,000 patients each year in the United States, little is known about why the treatment works. Using an experimental radiation model, University of Minnesota Cancer Center researchers and colleagues have determined that radiation treatment may relieve pain by reducing bone tumor size and decreasing progression of cancer-induced bone destruction. The findings appear in February issue of the journal Radiation Research.

"Perhaps the greatest obstacle to improving pain relief following radiation of bone cancer is our limited knowledge regarding mechanisms responsible for decreasing the pain," said lead investigator Denis Clohisy, M.D., professor of orthopedic surgery in the Medical School and Cancer Center member. "Future use of the experimental system described in this research should help accelerate the pace of discovery around these mechanisms and help efforts to reduce the burden of pain suffered by bone cancer patients."


Researchers in this investigation created an experimental model that limited radiation to the site of cancer in mice and then used an established bone pain model, imaging techniques, and histologic evaluations to understand the effects of radiation.

The research demonstrated that a localized, single radiation dose decreased painful behavior and increased limb use, which was associated with a decrease in bone destruction and tumor burden. Treated mice demonstrated greater pain relief and had significantly less bone destruction and tumor burden than untreated mice. Recent studies have demonstrated that tumor burden and bone destruction each correlate with behavioral and neurochemical measures of pain.

Co-authors of this study are Bruce J. Gerbi, Ph.D., Parham Alaei, Ph.D., Patrick W. Mantyh, J.D., Ph.D., Michael Goblirsch, B.A., Wendy E. Mathews, B.S., and Christine Lynch, B.S.


The Cancer Center at the University of Minnesota is a National Cancer Institute-designated Comprehensive Cancer Center. Awarded more than $80 million in peer-reviewed grants during fiscal year 2003, the Cancer Center conducts cancer research that advances knowledge and enhances care. The center also engages community outreach and public education efforts addressing cancer. To learn more about cancer, visit the University of Minnesota Cancer Center Web site at http://www.cancer.umn.edu. For cancer questions, call the Cancer Center information line at 1-888-CANCER MN (1-888-226-2376) or 612-624-2620 in the metro area.

Molly Portz | EurekAlert!
Further information:
http://www.umn.edu/
http://www.cancer.umn.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>