Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN research indicates why radiation therapy reduces bone cancer pain

02.02.2004


New findings may pave way for improved pain relief methods



Although physicians administer radiation therapy to relieve bone cancer pain in more than 100,000 patients each year in the United States, little is known about why the treatment works. Using an experimental radiation model, University of Minnesota Cancer Center researchers and colleagues have determined that radiation treatment may relieve pain by reducing bone tumor size and decreasing progression of cancer-induced bone destruction. The findings appear in February issue of the journal Radiation Research.

"Perhaps the greatest obstacle to improving pain relief following radiation of bone cancer is our limited knowledge regarding mechanisms responsible for decreasing the pain," said lead investigator Denis Clohisy, M.D., professor of orthopedic surgery in the Medical School and Cancer Center member. "Future use of the experimental system described in this research should help accelerate the pace of discovery around these mechanisms and help efforts to reduce the burden of pain suffered by bone cancer patients."


Researchers in this investigation created an experimental model that limited radiation to the site of cancer in mice and then used an established bone pain model, imaging techniques, and histologic evaluations to understand the effects of radiation.

The research demonstrated that a localized, single radiation dose decreased painful behavior and increased limb use, which was associated with a decrease in bone destruction and tumor burden. Treated mice demonstrated greater pain relief and had significantly less bone destruction and tumor burden than untreated mice. Recent studies have demonstrated that tumor burden and bone destruction each correlate with behavioral and neurochemical measures of pain.

Co-authors of this study are Bruce J. Gerbi, Ph.D., Parham Alaei, Ph.D., Patrick W. Mantyh, J.D., Ph.D., Michael Goblirsch, B.A., Wendy E. Mathews, B.S., and Christine Lynch, B.S.


The Cancer Center at the University of Minnesota is a National Cancer Institute-designated Comprehensive Cancer Center. Awarded more than $80 million in peer-reviewed grants during fiscal year 2003, the Cancer Center conducts cancer research that advances knowledge and enhances care. The center also engages community outreach and public education efforts addressing cancer. To learn more about cancer, visit the University of Minnesota Cancer Center Web site at http://www.cancer.umn.edu. For cancer questions, call the Cancer Center information line at 1-888-CANCER MN (1-888-226-2376) or 612-624-2620 in the metro area.

Molly Portz | EurekAlert!
Further information:
http://www.umn.edu/
http://www.cancer.umn.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>