Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN research indicates why radiation therapy reduces bone cancer pain

02.02.2004


New findings may pave way for improved pain relief methods



Although physicians administer radiation therapy to relieve bone cancer pain in more than 100,000 patients each year in the United States, little is known about why the treatment works. Using an experimental radiation model, University of Minnesota Cancer Center researchers and colleagues have determined that radiation treatment may relieve pain by reducing bone tumor size and decreasing progression of cancer-induced bone destruction. The findings appear in February issue of the journal Radiation Research.

"Perhaps the greatest obstacle to improving pain relief following radiation of bone cancer is our limited knowledge regarding mechanisms responsible for decreasing the pain," said lead investigator Denis Clohisy, M.D., professor of orthopedic surgery in the Medical School and Cancer Center member. "Future use of the experimental system described in this research should help accelerate the pace of discovery around these mechanisms and help efforts to reduce the burden of pain suffered by bone cancer patients."


Researchers in this investigation created an experimental model that limited radiation to the site of cancer in mice and then used an established bone pain model, imaging techniques, and histologic evaluations to understand the effects of radiation.

The research demonstrated that a localized, single radiation dose decreased painful behavior and increased limb use, which was associated with a decrease in bone destruction and tumor burden. Treated mice demonstrated greater pain relief and had significantly less bone destruction and tumor burden than untreated mice. Recent studies have demonstrated that tumor burden and bone destruction each correlate with behavioral and neurochemical measures of pain.

Co-authors of this study are Bruce J. Gerbi, Ph.D., Parham Alaei, Ph.D., Patrick W. Mantyh, J.D., Ph.D., Michael Goblirsch, B.A., Wendy E. Mathews, B.S., and Christine Lynch, B.S.


The Cancer Center at the University of Minnesota is a National Cancer Institute-designated Comprehensive Cancer Center. Awarded more than $80 million in peer-reviewed grants during fiscal year 2003, the Cancer Center conducts cancer research that advances knowledge and enhances care. The center also engages community outreach and public education efforts addressing cancer. To learn more about cancer, visit the University of Minnesota Cancer Center Web site at http://www.cancer.umn.edu. For cancer questions, call the Cancer Center information line at 1-888-CANCER MN (1-888-226-2376) or 612-624-2620 in the metro area.

Molly Portz | EurekAlert!
Further information:
http://www.umn.edu/
http://www.cancer.umn.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>