Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental treatment yields new hope for children battling cerebral palsy

02.02.2004


Children with cerebral palsy who are severely impaired showed significant improvement in their motor skills using a new experimental physical therapy regimen, said researchers at Georgetown University and University of Alabama at Birmingham. The study – the first randomized, controlled trial of its kind conducted on children – appears in the February 2 issue of the journal Pediatrics.



All treated children in this study outperformed the children in conventional therapy across all measures of success, including how well they could move their arms post-therapy and their ability to do new tasks during research and at home with their families.

Children with cerebral palsy (CP) exhibit an inability to control their muscles as a result of damage to the region of the brain that controls muscle tone. The result often renders children unable to perform seemingly simple everyday tasks such as picking up a cup, eating finger foods or reaching to be picked up by a parent. Conventional physical therapy interventions have done little to improve motor skills or overall quality of life for children, which led researchers to explore other more intensive and innovative therapies.


Georgetown professor Sharon Landesman Ramey while working at the University of Alabama (UAB), in collaboration with Drs. Stephanie DeLuca and Karen Echols, borrowed from the world of adult stroke recovery treatments to try "constraint-induced movement therapy" on children with CP. This therapy was pioneered by Dr. Edward Taub at UAB, and has shown significant results in helping adults recover motor function post-stroke.

"The pediatric version of constraint-induced movement therapy we created has produced very large and lasting benefits for these children," said Ramey, professor at Georgetown’s School of Nursing & Health Studies and Co-director of Georgetown’s Center for Health and Education. "Every child in the study responded to this treatment. Rather than languishing in less effective regimens, children and their families now have hope for drastic improvements. We are understandably thrilled by these results, and look forward to testing them with broader groups of children with cerebral palsy."

Working with 18 children with CP, researchers placed the children’s stronger arms in a cast, which the children wore for 3 weeks, and then gave them six hours of therapy per day for 21 consecutive days to retrain the weaker arm and hand to move. The control group received conventional physical therapy, which is much less time intensive and involved no casting of one side. Across all measures, the constraint induced therapy produced enhanced motor function in the weaker arm; six months after therapy the children still had sustained benefits.

CP affects at least two in 1,000 children in the United States, and approximately one million children under the age of 21 in the industrialized world. According to The Centers for Disease Control and Prevention, there are many possible causes of the brain damage that results in CP, including genetic conditions and problems with blood supply to the brain during pregnancy. Other causes of CP arise after the brain has developed. These causes can occur during later pregnancy, delivery, or the first years of the child’s life. They include bacterial meningitis and other infections, bleeding in the brain, lack of oxygen, severe jaundice and head injury.

The CDC’s website states that the lifetime costs for a person with were about $800,000 (in year 2000 dollars), not including expenses such as caregiver costs for children or adults with cerebral palsy that might have to be borne by families.

"CP can devastate children and their families emotionally and financially," said Ramey. "If our research leads to improved and accelerated treatment for CP, resulting in real shifts in quality of life for children, we will indeed have something to be very proud of."


This research was supported by the National and Child Health and Human Development of the National Institutes of Health, Alabama Health Services Foundation, the Civitan International Foundation, the Administration on Developmental Disabilities, and the Maternal and Child Health Bureau.

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Cancer Center. For more, please visit www.georgetown.edu/gumc.

Georgetown University’s School of Nursing was founded in 1903. The Health Studies track was added in 1998 to reflect the changing face of 21st-century health care. The School of Nursing & Health Studies seeks to improve the health and well-being of all people through innovative education in the fields of nursing and health studies. For more information, visit http://snhs.georgetown.edu.

Lindsey Spindle | EurekAlert!
Further information:
http://gumc.georgetown.edu/
http://snhs.georgetown.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>