Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow–derived stem cells active in pulmonary fibrosis

16.01.2004


Adult stem cells have long been thought to be restricted in their potential to differentiate and regenerate tissues in which they reside. A study by Sem Phan and colleagues from the University of Michigan, in the January 15 issue of the Journal of Clinical Investigation, suggests that the collagen overproduction and deposition in the lung causing idiopathic pulmonary fibrosis may develop from cells derived from bone marrow stems cells, rather than parenchymal lung fibroblasts.



The authors induced pulmonary fibrosis in mice that had been altered with bone marrow labeled with a fluorescent green marker protein. In these mice, cells derived from bone marrow–derived stem cells fluoresce green, while those cells that reside in the lung do not. Most of the collagen-producing fibroblasts observed in the lungs of these mice fluoresced green, indicating that they were of bone marrow origin.

In an accompanying commentary Sarah Dunsmore and Steven Shapiro from Harvard Medical School discuss this new concept in pulmonary fibrosis. They state "understanding the mechanisms of engraftment will be important as clinical applications of bone marrow stem cell therapy are explored. The clinical implications of these findings are significant; for example, we might now consider bone marrow stem cell therapy to correct structural alterations in the lung." They conclude "translation of our understanding of disease pathogenesis into clinical practice will bring us closer to our real goal – improving the lives of our patients and ultimately curing disease.



TITLE: Bone marrow–derived progenitor cells in pulmonary fibrosis

AUTHOR CONTACT:
Sem H. Phan
University of Michigan Medical School, Ann Arbor, Michigan, USA.
Phone: (734) 763-6454
Fax: (734) 936-1938
E-mail: shphan@umich.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/18847.pdf

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>