Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

7-month-old is youngest recipient of artificial corneal transplant

16.01.2004


A 7-month-old child whose first corneal transplant was unsuccessful underwent surgery Monday at the University of Rochester Eye Institute to implant an artificial cornea in an effort to give him sight. He is the youngest patient ever to receive the device.



Lukas Rakowsky of Dupont, Wash., was born in May with a tumor on his left eye. The tumor was successfully removed five weeks after his birth at Madigan Army Medical Center in Ft. Lewis, Wash. Lukas also underwent corneal transplant surgery that same day, in an attempt to help him achieve sight in the eye. The day after the surgery, though, Lukas’ cornea began to cloud up again, signaling the transplant had been unsuccessful.

His parents, Shana and Peter Rakowsky, were referred to surgeon James Aquavella, M.D., at the University of Rochester Eye Institute. In addition to specializing in traditional cadaveric corneal transplants, Aquavella has been implanting plastic corneal devices since the 1960s. The first procedures were long and tedious, and results were not known for many months. Patients required careful follow-up for the rest of their lives in an attempt to reduce the ever-present danger of serious complications. But there have been great improvements over the past 40 years, he says, making possible new procedures like the one performed on young Lukas.


Aquavella began last spring implanting the AlphaCor, an artificial cornea that doesn’t require donor tissue. The flexible, one-piece keratoprosthesis is designed to replace scarred or diseased corneas. The device is easier to implant than older models, cutting down on surgery time. The lack of donor tissue means the risk of rejection is eliminated. The new implant offers significantly more possibilities for patients at no more risk than implanting a cadaveric donor cornea, Aquavella says.

For patients like Lukas who have undergone unsuccessful corneal transplants and have little or no sight, this device can provide limited vision, allowing patients to see shadows, movement and colors, and some may even regain the ability to read.

"It is our expectation that for patients with a high risk of failure with a traditional corneal transplant, or as in the case of patients who have already failed previous attempts at corneal transplantation, this option offers renewed hope," Aquavella says. A similar device, the Dohlman KPro, also is increasingly employed in individuals with poor prognosis for a traditional cornea transplant, he adds.

The University of Rochester Eye Institute is one of 26 ophthalmic centers to evaluate the AlphaCor device. The Eye Institute is designated one of six centers of excellence in the United States to assist with the development of the technology. While the device has the approval of the FDA, Aquavella and colleagues are tracking complications, visual acuity, medications and failure rates.

Aquavella has implanted eight Argus implants to date. The majority of patients, all of whom have multiple eye diseases, have seen some improvement in their vision.

The surgery is similar to implanting a donor cornea. Part of the cornea is removed and the AlphaCor, about the size and thickness of a dime, is transplanted in its place. The procedure typically concludes with the formation of a flap of tissue from the conjunctiva (the white of the eye), which is used to cover the surface of the eye and create a natural bandage that allows the AlphaCor to heal in place.

Three months after surgery, a circle of tissue covering the front of the eye is removed, allowing light and images to enter. The patient sees through this opening, and the vision should be as good as the health of the back of the eye will allow. Some vision may be further improved with glasses or even with contact lenses fit over the prosthesis.

In the case of infants, such as Lukas, the conjunctiva can’t be used since it is vital that light enter the eye as soon as possible to avoid amblyopia (lazy eye), which is caused by lack of visual stimulus to the brain early in a baby’s life. Instead, the circle of tissue is removed when the device was implanted, and a transparent sheet made from amniotic membrane was used to protect Lukas’ eye and allow light in.


###
The University of Rochester Eye Institute, led by director Steven E. Feldon, M.D., M.B.A., is a world-class team of ophthalmologists and researchers committed to developing and applying advanced technologies for the preservation, enhancement and restoration of vision. Working with international experts in vision science and research, including those in optics, engineering and vision at the University of Rochester Center for Visual Science and Institute of Optics, the Eye Institute provides a full range of care and treatment options for the most common to the most complex vision problems. The Institute is committed to using its unique research capabilities to shortening the time frame in which new ideas become clinical realities.

The Eye Institute recently was awarded a $2.6 million construction grant by the National Institutes of Health for a building expansion that will triple research laboratory space and clinical space and create more room for its fast-growing faculty group, which has nearly tripled in the last two years.

Karin Gaffney | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>