Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

7-month-old is youngest recipient of artificial corneal transplant

16.01.2004


A 7-month-old child whose first corneal transplant was unsuccessful underwent surgery Monday at the University of Rochester Eye Institute to implant an artificial cornea in an effort to give him sight. He is the youngest patient ever to receive the device.



Lukas Rakowsky of Dupont, Wash., was born in May with a tumor on his left eye. The tumor was successfully removed five weeks after his birth at Madigan Army Medical Center in Ft. Lewis, Wash. Lukas also underwent corneal transplant surgery that same day, in an attempt to help him achieve sight in the eye. The day after the surgery, though, Lukas’ cornea began to cloud up again, signaling the transplant had been unsuccessful.

His parents, Shana and Peter Rakowsky, were referred to surgeon James Aquavella, M.D., at the University of Rochester Eye Institute. In addition to specializing in traditional cadaveric corneal transplants, Aquavella has been implanting plastic corneal devices since the 1960s. The first procedures were long and tedious, and results were not known for many months. Patients required careful follow-up for the rest of their lives in an attempt to reduce the ever-present danger of serious complications. But there have been great improvements over the past 40 years, he says, making possible new procedures like the one performed on young Lukas.


Aquavella began last spring implanting the AlphaCor, an artificial cornea that doesn’t require donor tissue. The flexible, one-piece keratoprosthesis is designed to replace scarred or diseased corneas. The device is easier to implant than older models, cutting down on surgery time. The lack of donor tissue means the risk of rejection is eliminated. The new implant offers significantly more possibilities for patients at no more risk than implanting a cadaveric donor cornea, Aquavella says.

For patients like Lukas who have undergone unsuccessful corneal transplants and have little or no sight, this device can provide limited vision, allowing patients to see shadows, movement and colors, and some may even regain the ability to read.

"It is our expectation that for patients with a high risk of failure with a traditional corneal transplant, or as in the case of patients who have already failed previous attempts at corneal transplantation, this option offers renewed hope," Aquavella says. A similar device, the Dohlman KPro, also is increasingly employed in individuals with poor prognosis for a traditional cornea transplant, he adds.

The University of Rochester Eye Institute is one of 26 ophthalmic centers to evaluate the AlphaCor device. The Eye Institute is designated one of six centers of excellence in the United States to assist with the development of the technology. While the device has the approval of the FDA, Aquavella and colleagues are tracking complications, visual acuity, medications and failure rates.

Aquavella has implanted eight Argus implants to date. The majority of patients, all of whom have multiple eye diseases, have seen some improvement in their vision.

The surgery is similar to implanting a donor cornea. Part of the cornea is removed and the AlphaCor, about the size and thickness of a dime, is transplanted in its place. The procedure typically concludes with the formation of a flap of tissue from the conjunctiva (the white of the eye), which is used to cover the surface of the eye and create a natural bandage that allows the AlphaCor to heal in place.

Three months after surgery, a circle of tissue covering the front of the eye is removed, allowing light and images to enter. The patient sees through this opening, and the vision should be as good as the health of the back of the eye will allow. Some vision may be further improved with glasses or even with contact lenses fit over the prosthesis.

In the case of infants, such as Lukas, the conjunctiva can’t be used since it is vital that light enter the eye as soon as possible to avoid amblyopia (lazy eye), which is caused by lack of visual stimulus to the brain early in a baby’s life. Instead, the circle of tissue is removed when the device was implanted, and a transparent sheet made from amniotic membrane was used to protect Lukas’ eye and allow light in.


###
The University of Rochester Eye Institute, led by director Steven E. Feldon, M.D., M.B.A., is a world-class team of ophthalmologists and researchers committed to developing and applying advanced technologies for the preservation, enhancement and restoration of vision. Working with international experts in vision science and research, including those in optics, engineering and vision at the University of Rochester Center for Visual Science and Institute of Optics, the Eye Institute provides a full range of care and treatment options for the most common to the most complex vision problems. The Institute is committed to using its unique research capabilities to shortening the time frame in which new ideas become clinical realities.

The Eye Institute recently was awarded a $2.6 million construction grant by the National Institutes of Health for a building expansion that will triple research laboratory space and clinical space and create more room for its fast-growing faculty group, which has nearly tripled in the last two years.

Karin Gaffney | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>