Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metastasis of colon cancer cells reversed in vitro

06.01.2004


Weizmann Institute scientists have succeeded in reversing the metastatic properties of colon cancer cells, in vitro. The findings, published in the Nov. 24 issue of The Journal of Cell Biology, uncover a key process involved in the metastasis of colon cancer cells and raise hopes that target-specific drugs might be devised to prevent, or reverse, the invasive behavior of metastatic colon cancer cells. Colon cancer is the second most prevalent type of cancer in men and third in women in the Western world.



The researchers, headed by Prof. Avri Ben-Ze’ev of the Molecular Cell Biology Department, have confirmed that the invasive behavior of colon cancer cells results from the malfunction of adhesion-related ("cell-gluing") mechanisms.

Cells are held together by "adhesive molecules," including two key molecules called beta-catenin and E-cadherin, which are found near the surfaces of cells. Beta-catenin also has another function: when inside the nuclei of cells, it regulates the expression of genes. Beta-catenin is known to be involved in various cancers, including colon cancer, by aberrantly activating genes whose identity is mostly unclear. In previous research, Ben-Ze’ev’s team identified several such genes that are involved in the progression of human melanoma and colon cancer.


Now, the scientists have found that when a colon cancer cell becomes metastatic, abnormally large amounts of beta-catenin are found in its nucleus and, unexpectedly, they bring about a reduction in adhesion. The cell can thus break loose from the tissue and migrate to form another tumor at a distant site.

Beta-catenin in the nucleus does this by activating a gene called Slug. Slug inhibits the production of beta-catenin’s partner in cell adhesion, E-cadherin. The shortage of E-cadherin prevents the cell from adhering to adjacent cells. The cell takes on a boat-like shape and, leaving the pack, invades neighboring tissues until it enters the bloodstream. This migrating cancer cell can, in time, form a new tumor by entering distant tissue via the bloodstream and multiplying there.

Ben-Ze’ev’s team discovered that when such a colon cancer cell becomes surrounded by other such cells in a crowded environment (whether in the body or in the lab), minute quantities of E-cadherin in the cell recruit beta-catenin from the nucleus and can thus begin the process of binding together.

Lower levels of beta-catenin in the nucleus result in decreased Slug production (and increased E-cadherin production). As a result, the cells stick together and form a tissue-like organization – losing their metastatic properties. This is precisely the process that the scientists hope to be able to induce in patients to block metastasis.

"The fact that the invasive process in colon cancer can be reversed is surprising," says Ben-Ze’ev. "It offers hope of reversing the metastatic process or even preventing it in the future by designing a drug that targets Slug."

Prof. Avri Ben-Ze’ev’s research is supported by the M.D. Moross Institute for Cancer Research, the Yad Abraham Center for Cancer Diagnostics and Therapy, and the late Maria Zondek. Prof. Ben-Ze’ev is the incumbent of the Samuel Lunenfeld-Reuben Kunin Chair of Genetics.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>