Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metastasis of colon cancer cells reversed in vitro

06.01.2004


Weizmann Institute scientists have succeeded in reversing the metastatic properties of colon cancer cells, in vitro. The findings, published in the Nov. 24 issue of The Journal of Cell Biology, uncover a key process involved in the metastasis of colon cancer cells and raise hopes that target-specific drugs might be devised to prevent, or reverse, the invasive behavior of metastatic colon cancer cells. Colon cancer is the second most prevalent type of cancer in men and third in women in the Western world.



The researchers, headed by Prof. Avri Ben-Ze’ev of the Molecular Cell Biology Department, have confirmed that the invasive behavior of colon cancer cells results from the malfunction of adhesion-related ("cell-gluing") mechanisms.

Cells are held together by "adhesive molecules," including two key molecules called beta-catenin and E-cadherin, which are found near the surfaces of cells. Beta-catenin also has another function: when inside the nuclei of cells, it regulates the expression of genes. Beta-catenin is known to be involved in various cancers, including colon cancer, by aberrantly activating genes whose identity is mostly unclear. In previous research, Ben-Ze’ev’s team identified several such genes that are involved in the progression of human melanoma and colon cancer.


Now, the scientists have found that when a colon cancer cell becomes metastatic, abnormally large amounts of beta-catenin are found in its nucleus and, unexpectedly, they bring about a reduction in adhesion. The cell can thus break loose from the tissue and migrate to form another tumor at a distant site.

Beta-catenin in the nucleus does this by activating a gene called Slug. Slug inhibits the production of beta-catenin’s partner in cell adhesion, E-cadherin. The shortage of E-cadherin prevents the cell from adhering to adjacent cells. The cell takes on a boat-like shape and, leaving the pack, invades neighboring tissues until it enters the bloodstream. This migrating cancer cell can, in time, form a new tumor by entering distant tissue via the bloodstream and multiplying there.

Ben-Ze’ev’s team discovered that when such a colon cancer cell becomes surrounded by other such cells in a crowded environment (whether in the body or in the lab), minute quantities of E-cadherin in the cell recruit beta-catenin from the nucleus and can thus begin the process of binding together.

Lower levels of beta-catenin in the nucleus result in decreased Slug production (and increased E-cadherin production). As a result, the cells stick together and form a tissue-like organization – losing their metastatic properties. This is precisely the process that the scientists hope to be able to induce in patients to block metastasis.

"The fact that the invasive process in colon cancer can be reversed is surprising," says Ben-Ze’ev. "It offers hope of reversing the metastatic process or even preventing it in the future by designing a drug that targets Slug."

Prof. Avri Ben-Ze’ev’s research is supported by the M.D. Moross Institute for Cancer Research, the Yad Abraham Center for Cancer Diagnostics and Therapy, and the late Maria Zondek. Prof. Ben-Ze’ev is the incumbent of the Samuel Lunenfeld-Reuben Kunin Chair of Genetics.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>