Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metastasis of colon cancer cells reversed in vitro

06.01.2004


Weizmann Institute scientists have succeeded in reversing the metastatic properties of colon cancer cells, in vitro. The findings, published in the Nov. 24 issue of The Journal of Cell Biology, uncover a key process involved in the metastasis of colon cancer cells and raise hopes that target-specific drugs might be devised to prevent, or reverse, the invasive behavior of metastatic colon cancer cells. Colon cancer is the second most prevalent type of cancer in men and third in women in the Western world.



The researchers, headed by Prof. Avri Ben-Ze’ev of the Molecular Cell Biology Department, have confirmed that the invasive behavior of colon cancer cells results from the malfunction of adhesion-related ("cell-gluing") mechanisms.

Cells are held together by "adhesive molecules," including two key molecules called beta-catenin and E-cadherin, which are found near the surfaces of cells. Beta-catenin also has another function: when inside the nuclei of cells, it regulates the expression of genes. Beta-catenin is known to be involved in various cancers, including colon cancer, by aberrantly activating genes whose identity is mostly unclear. In previous research, Ben-Ze’ev’s team identified several such genes that are involved in the progression of human melanoma and colon cancer.


Now, the scientists have found that when a colon cancer cell becomes metastatic, abnormally large amounts of beta-catenin are found in its nucleus and, unexpectedly, they bring about a reduction in adhesion. The cell can thus break loose from the tissue and migrate to form another tumor at a distant site.

Beta-catenin in the nucleus does this by activating a gene called Slug. Slug inhibits the production of beta-catenin’s partner in cell adhesion, E-cadherin. The shortage of E-cadherin prevents the cell from adhering to adjacent cells. The cell takes on a boat-like shape and, leaving the pack, invades neighboring tissues until it enters the bloodstream. This migrating cancer cell can, in time, form a new tumor by entering distant tissue via the bloodstream and multiplying there.

Ben-Ze’ev’s team discovered that when such a colon cancer cell becomes surrounded by other such cells in a crowded environment (whether in the body or in the lab), minute quantities of E-cadherin in the cell recruit beta-catenin from the nucleus and can thus begin the process of binding together.

Lower levels of beta-catenin in the nucleus result in decreased Slug production (and increased E-cadherin production). As a result, the cells stick together and form a tissue-like organization – losing their metastatic properties. This is precisely the process that the scientists hope to be able to induce in patients to block metastasis.

"The fact that the invasive process in colon cancer can be reversed is surprising," says Ben-Ze’ev. "It offers hope of reversing the metastatic process or even preventing it in the future by designing a drug that targets Slug."

Prof. Avri Ben-Ze’ev’s research is supported by the M.D. Moross Institute for Cancer Research, the Yad Abraham Center for Cancer Diagnostics and Therapy, and the late Maria Zondek. Prof. Ben-Ze’ev is the incumbent of the Samuel Lunenfeld-Reuben Kunin Chair of Genetics.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>