Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More sensitive test norms better predict who might develop Alzheimer’s disease

05.01.2004


Higher cutoffs led to more accurate identification of high-functioning



Diagnosticians would do well to raise the bar when testing high-functioning people for pre-clinical signs of Alzheimer’s disease, according to a new study. Higher test cutoffs, rather than the standard group average, more accurately predicted how many highly intelligent people would deteriorate over time. This finding is reported in the January issue of Neuropsychology, which is published by the American Psychological Association (APA).

Early diagnosis of Alzheimer’s has taken on growing importance, given new medical and psychological interventions that can slow (but not stop) the course of the disease. In addition, highly intelligent people have been found, on average, to show clinical signs of Alzheimer’s later than the general population. Once they do, they decline much faster. Thought to reflect their greater mental reserves, this different pattern may call for a different approach to diagnosis.


Says lead author Dorene Rentz, PsyD, "Highly intelligent elders are often told their memory changes are typical of normal aging when they are not. As a result, they would miss the advantages of disease-modifying medications when they become available."

Rentz, of Brigham and Women’s Hospital’s Department of Neurology and Harvard Medical School, led her co-authors in a study of 42 older people with IQ’s of 120 or more, drawn from a longitudinal study of aging and Alzheimer’s Disease. Rentz and her colleagues analyzed participant performance on measures of cognitive ability, such as word generation, memory and visuospatial processing, with scores gathered at the start of the study and three-and-a-half years later. Then, they asked which of two different test norms forecast problems: The standard norm, derived from a large cross-section of the population, or an adjusted high-IQ norm that measured changes against the individual’s higher ability level?

The raised cutoffs worked better. For memory scores obtained at baseline, raised cutoffs predicted that 11 of the 42 individuals were at risk for future decline – compared with standard cutoffs, which indicated they were normal. But, what’s normal for people of average IQ isn’t normal for people of higher IQ: True to the former prediction, three and a half years later, nine of those 11 people had declined. Six of those went on to develop mild cognitive impairment (MCI), a transitional illness from normal aging to a dementia (of which one type is Alzheimer’s). Five of these individuals have since received a diagnosis of Alzheimer’s disease, two years after this study was submitted.

"With standard norms, people with higher levels of ability would be classified as normal for up to three years before they began demonstrating a decline on standardized tests," says Rentz. "In this case, they could be at risk for not receiving early treatment intervention."

The statistical approach was simple. High-IQ people were scored against an average that was "normal" for them, proportionately higher than the cross-sectional average of 100. Scores were considered abnormal if, according to standard practice, they were 1.5 standard deviations or more below the (adjusted) norm.

Rentz and her co-authors believe that by the same reasoning, adjusted norms could help people at the other end of the scale. "People with below-average intelligence have the potential for being misdiagnosed as ’demented’ when they are not, because they score below the normative cutoffs," explains Rentz. Adjusting norms to match the ability level of the person being evaluated, she believes, could have the greatest predictive power in detecting the early signs of an incipient Alzheimer’s-type dementia.

Rentz points out that for women, adjusting for IQ may be particularly useful compared with traditional adjustments for education. "Education-based methods often underestimate ability in women who did not have the same educational advantages as men, particularly in this aged cohort," she says.

The authors also report that IQ-adjusted norms might help to control for some inaccuracies that have filtered into normative data, as these norms were derived from cross-sectional populations who might not have been adequately screened for preclinical Alzheimer’s disease. Because it could take a long time to develop new databases from longitudinal studies, the authors say that the "use of an IQ-adjusted method may provide a temporary solution for clinicians and research investigators evaluating older highly intelligent individuals at risk for Alzheimer’s disease."


Article: "Use of IQ-Adjusted Norms to Predict Progressive Cognitive Decline in Highly Intelligent Older Individuals," Dorene M. Rentz, PsyD, Brigham and Women’s Hospital and Harvard Medical School; Terri J. Huh, MA, University of Massachusetts at Boston; and Robert R. Faust, B.A., Andrew E. Budson, MD, Leonard F.M. Scinto, PhD, Reisa A. Sperling, MD, and Kirk R. Daffner, MD, all of Brigham and Women’s Hospital’s Department of Neurology and Harvard Medical School; Neuropsychology, Vol. 18, No. 1.

(Full text of the article is available from the APA Public Affairs Office)

Dorene Rentz can be reached by email at drentz@partners.org or by phone at 617-732-8235. She can also be reached through a publicist, Melanie Franco, 617-534-1605 or mfranco1@partners.org. The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>