Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More sensitive test norms better predict who might develop Alzheimer’s disease

05.01.2004


Higher cutoffs led to more accurate identification of high-functioning



Diagnosticians would do well to raise the bar when testing high-functioning people for pre-clinical signs of Alzheimer’s disease, according to a new study. Higher test cutoffs, rather than the standard group average, more accurately predicted how many highly intelligent people would deteriorate over time. This finding is reported in the January issue of Neuropsychology, which is published by the American Psychological Association (APA).

Early diagnosis of Alzheimer’s has taken on growing importance, given new medical and psychological interventions that can slow (but not stop) the course of the disease. In addition, highly intelligent people have been found, on average, to show clinical signs of Alzheimer’s later than the general population. Once they do, they decline much faster. Thought to reflect their greater mental reserves, this different pattern may call for a different approach to diagnosis.


Says lead author Dorene Rentz, PsyD, "Highly intelligent elders are often told their memory changes are typical of normal aging when they are not. As a result, they would miss the advantages of disease-modifying medications when they become available."

Rentz, of Brigham and Women’s Hospital’s Department of Neurology and Harvard Medical School, led her co-authors in a study of 42 older people with IQ’s of 120 or more, drawn from a longitudinal study of aging and Alzheimer’s Disease. Rentz and her colleagues analyzed participant performance on measures of cognitive ability, such as word generation, memory and visuospatial processing, with scores gathered at the start of the study and three-and-a-half years later. Then, they asked which of two different test norms forecast problems: The standard norm, derived from a large cross-section of the population, or an adjusted high-IQ norm that measured changes against the individual’s higher ability level?

The raised cutoffs worked better. For memory scores obtained at baseline, raised cutoffs predicted that 11 of the 42 individuals were at risk for future decline – compared with standard cutoffs, which indicated they were normal. But, what’s normal for people of average IQ isn’t normal for people of higher IQ: True to the former prediction, three and a half years later, nine of those 11 people had declined. Six of those went on to develop mild cognitive impairment (MCI), a transitional illness from normal aging to a dementia (of which one type is Alzheimer’s). Five of these individuals have since received a diagnosis of Alzheimer’s disease, two years after this study was submitted.

"With standard norms, people with higher levels of ability would be classified as normal for up to three years before they began demonstrating a decline on standardized tests," says Rentz. "In this case, they could be at risk for not receiving early treatment intervention."

The statistical approach was simple. High-IQ people were scored against an average that was "normal" for them, proportionately higher than the cross-sectional average of 100. Scores were considered abnormal if, according to standard practice, they were 1.5 standard deviations or more below the (adjusted) norm.

Rentz and her co-authors believe that by the same reasoning, adjusted norms could help people at the other end of the scale. "People with below-average intelligence have the potential for being misdiagnosed as ’demented’ when they are not, because they score below the normative cutoffs," explains Rentz. Adjusting norms to match the ability level of the person being evaluated, she believes, could have the greatest predictive power in detecting the early signs of an incipient Alzheimer’s-type dementia.

Rentz points out that for women, adjusting for IQ may be particularly useful compared with traditional adjustments for education. "Education-based methods often underestimate ability in women who did not have the same educational advantages as men, particularly in this aged cohort," she says.

The authors also report that IQ-adjusted norms might help to control for some inaccuracies that have filtered into normative data, as these norms were derived from cross-sectional populations who might not have been adequately screened for preclinical Alzheimer’s disease. Because it could take a long time to develop new databases from longitudinal studies, the authors say that the "use of an IQ-adjusted method may provide a temporary solution for clinicians and research investigators evaluating older highly intelligent individuals at risk for Alzheimer’s disease."


Article: "Use of IQ-Adjusted Norms to Predict Progressive Cognitive Decline in Highly Intelligent Older Individuals," Dorene M. Rentz, PsyD, Brigham and Women’s Hospital and Harvard Medical School; Terri J. Huh, MA, University of Massachusetts at Boston; and Robert R. Faust, B.A., Andrew E. Budson, MD, Leonard F.M. Scinto, PhD, Reisa A. Sperling, MD, and Kirk R. Daffner, MD, all of Brigham and Women’s Hospital’s Department of Neurology and Harvard Medical School; Neuropsychology, Vol. 18, No. 1.

(Full text of the article is available from the APA Public Affairs Office)

Dorene Rentz can be reached by email at drentz@partners.org or by phone at 617-732-8235. She can also be reached through a publicist, Melanie Franco, 617-534-1605 or mfranco1@partners.org. The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>