Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device to help premature babies

23.12.2003



Australian scientists have invented a simple device that is ready to help thousands of premature babies in third-world countries who suffer from respiratory difficulties - problems that can cause brain damage and blindness.

Dr Kurt Liffman of CSIRO Biomedical Devices says, "The Oxymix device is a simple, compact and inexpensive device to mix oxygen and atmospheric air".

"The Oxymix was originally conceived for use in developing countries where hospitals have access to medical-grade compressed oxygen, but not to medical-grade compressed air."



In such hospitals, when babies are treated for respiratory difficulties or lung disease, they are usually put in an ’oxygen hood’, which is supplied with a small amount of pure oxygen. This may raise the oxygen level, but as the gas flow is so low, the baby’s exhaled carbon dioxide builds up in the hood. This build-up can cause serious problems. Also, as the level of oxygen is very hard to maintain, it can vary from being too high (causing blindness) or too low (causing brain damage).

"The air that is provided to pre-term babies must be an appropriate air/oxygen mix and the Oxymix device does this simply and safely. It provides a way of supplying the correct flow rate of any concentration of oxygen from 21% to 100%, via a single 100% oxygen gas supply."

The development of the Oxymix is a joint project between the Australian medical devices company NASCOR and CSIRO BioMedical Devices.

"NASCOR went to CSIRO to help us develop this device because we knew of their expertise in gas flow and turbine technology", says Dr Howard Chilton, Chairman and Director of R&D at NASCOR.

"CSIRO’s mechanical design met all of our objectives in a most elegant fashion. It has enabled us to manufacture an inexpensive, highly professional and critically useful device that will help thousands of babies around the world."

NASCOR used high-quality industrial and electronic design to make the Oxymix an easy to use, attractive and safe device. Taking the basic concept, sophisticated electronics were employed to provide internal safety mechanisms and alarm systems to make this a state-of-the-art medical device that also has applications in advanced medical markets.

In advanced medical markets, the alternative products are either a very expensive air/oxygen ’blender’ or a very noisy and high gas flow venturi mixer.

It is envisaged that the Oxymix will be available to hospitals for around A$500 (compared to upwards of A$2000 for a blender). In addition, the Oxymix should provide hospitals further cost savings as it does not need a compressed air supply and only uses relatively low flows of oxygen.

CSIRO Biomedical Devices is a specialised R&D unit attached to CSIRO Energy & Thermofluids Engineering, which is a world leader in computational fluid dynamics and offers the only comprehensive fluid dynamics laboratory in Australia.

NASCOR Pty Ltd is a Sydney-based developer of innovative medical devices with specialist expertise in the neonatal care market. The company’s product range also includes oxygen hoods and a phototherapy eye mask, which it currently exports to over 30 countries worldwide. NASCOR is always seeking ideas from healthcare workers for new medical devices.

For Further Information Contact:

Ken Anderson
Manager Marketing Communications
CSIRO Manufacturing & Infrastructure Technology
Tel: 61 3 9545 2052
Mobile: 0414 457 214
Email: Ken.Anderson@csiro.au

Huw Jones
Business Development Director
Nascor Pty Ltd
Tel: 61 2 9452-6244
Mobile: 0412 707 580
Email: huwdjones@nascor.com.au



Ms Rosie Schmedding | CSIRO
Further information:
http://www.cmit.csiro.au
http://www.nascor.com.au
http://www.csiro.au/index.asp?type=mediaRelease&id=oxymix

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>