Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking selected neurotransmitter activity may decrease alcohol consumption

15.12.2003


  • Neuropeptide Y (NPY) is a neurotransmitter that is integral to neurobiological functions such as anxiety, pain, memory and feeding behaviors.



  • Researchers have found that a compound that blocks NPY activity decreases both the onset as well as the repetition of alcohol consumption.

  • These findings have important implications for the treatment of both alcohol abuse and dependence.

Peptides are a class of neurotransmitters, chemicals used by brain cells to communicate with each other. Neuropeptide Y (NPY) is the most abundant and widely distributed peptide, and is involved in a variety of neurobiological functions, including anxiety, pain, memory, and feeding behavior. Although previous animal research has implicated NPY systems in alcohol abuse and alcoholism, findings published in the December issue of Alcoholism: Clinical & Experimental Research are the first to show that a compound that blocks NPY activity may be useful for alcohol treatment.


"NPY is the most potent stimulant of feeding behavior known," explained Clyde W. Hodge, associate professor in the departments of psychiatry and pharmacology at the University of North Carolina at Chapel Hill and corresponding author for the study. "For example, the primary brain region involved in control of eating is the hypothalamus. Animal studies have shown that repeated treatment of the hypothalamus with NPY produces dietary obesity in otherwise normal rats. We suspect that alcohol may usurp brain systems that evolved to perform other functions, such as eating, because these neural systems evolved long before humans discovered alcoholic beverages. Alcohol and drug abuse, therefore, can be considered disorders of consumption."

"Since NPY is a signal molecule, it produces its effects via several NPY receptors in the brain, such as the NPY-Y5 receptors," added Subhash C. Pandey, associate professor and director of Neuroscience Alcoholism Research in the department of psychiatry at the University of Illinois at Chicago. "This research suggests that alcohol-preferring mice may have higher levels of NPY-Y5 receptors in the brain. Other research suggests that these mice have lower NPY levels in the brain area involved in reward of alcohol drinking. It is also possible that both lower NPY levels and higher NPY-Y5 receptors in the brain may be associated with the excessive alcohol drinking behaviors of these mice."

This study uses alcohol-preferring mice called C57BL/6 to examine the effects of the NPY-Y5 receptor antagonist L-152,804 on the onset and maintenance of alcohol self-administration.

"Most of the known compounds that target NPY receptors do not cross the blood-brain barrier," said Hodge. "L-152,804, however, is a novel compound that was recently shown to both cross the blood-brain barrier and block NPY-Y5 receptors."

Researchers housed 59 male C57BL/6J mice in standard Plexiglas cages (4 per cage) with food and water always available. Mice were trained to self-administer either alcohol (10% v/v) or water during 16-hour sessions. After four months, the mice were injected systemically with L-152,804 (0, 10, 30 or 60 mg/kg) prior to the sessions.

Results indicate that not only does L-152,804 delay the onset of alcohol self-administration, which is considered an index of relapse potential, but it also seems to reduce the reinforcing, or rewarding, effects of alcohol.

"The process by which drug self-administration behavior becomes repetitive is called positive reinforcement," said Hodge. "It reflects the tendency of all animals, human and non-human, to repeat responses that produce a desired outcome. In general, this process functions to sustain behavior that is essential to the individual or species, such as eating, drinking or reproduction. In this particular case, L-152,804 appeared to block the reinforcing effects of alcohol. When taken together, these results suggest that L-152,804 might reduce the motivation to start drinking as well as decrease the amount of alcohol consumed. Thus, L-152,804 might make relapse less likely and possibly dampen its consequences.

Both Hodge and Pandey said these results have clear implications for the medical management of alcohol abuse and alcoholism.

"If these studies are replicable and consistently produce findings that alcohol preference and dependence are associated with increased NPY-Y5 receptors in the brain," said Pandey, "then blocking these receptors with L-152, 804 may be useful in treating alcoholism. Furthermore, since this receptor antagonist is able to delay the onset of alcohol-drinking behaviors in alcohol-preferring mice, it also has potential in preventing relapse to alcohol abuse."

"Approved medications for alcoholism such as naltrexone," added Hodge, "may help prevent relapse but do not decrease drinking by chronic alcoholics who are actively drinking. L-152,804 has the potential to both prevent relapse and decrease active drinking. When you also consider the fact that L-152,804 can be administered orally, we believe that medications that block NPY actions at its receptors have great potential for the medical management of alcoholism."


Alcoholism: Clinical & Experimental Research (ACER) is the official journal of the Research Society on Alcoholism and the International Society for Biomedical Research on Alcoholism. Co-authors of the ACER paper included Jason P. Schroeder and Kimberly A. Iller of the Department of Psychiatry and Bowles Center for Alcohol Studies at the University of North Carolina at Chapel Hill. The study was funded by the National Institute on Alcohol Abuse and Alcoholism, the State of California, and the Bowles Center for Alcohol Studies at the University of North Carolina at Chapel Hill.

Clyde W. Hodge | EurekAlert!
Further information:
http://www.alcoholism-cer.com/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>