Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery can make it possible to take more drugs orally

01.12.2003


Many drugs cannot be administered orally since they cannot be taken up by the intestines. All attempts to solve this problem have thus far resulted in unacceptable risks of side-effects, mainly because the intestinal wall is so severely impacted that not only the drug but other substances, including toxins, can be absorbed. Now a team of scientists from Uppsala University in Sweden have made a major discovery that may solve the problem.



The intestinal wall functions as an effective obstacle to keep various substances from passing from the intestine out into the body. Some drugs, like antibiotics, can use the transport canals that exist, while other important medicines cannot. The porosity of the intestinal wall is determined by a sort of “filter,” so-called “tight junctions,” consisting mainly of two types of proteins: claudins and occludins. Each such protein molecule interacts with a corresponding molecule in the adjacent cell by a loop-shaped bond consisting of peptides. To let more substances pass through, it’s necessary to temporarily increase the porosity of the filter--without damaging the cell. Thus far research has been directed toward changing the porosity via the claudins, which are more dynamic and changeable, but this has always brought with it undesired and irreversible effects that increase the risk of cell damage.

Instead, the Uppsala scientists, led by Professor Per Artursson, have focused on the other protein: the occludins, which are more static proteins. Experiments have been carried out on cells and have yet to be applied to living organisms. They synthesized peptides that correspond to different sequences in the loop that joins the canal between two cells. One of these peptides proved to increase the porosity of the intestinal wall when it was coupled with occludin molecules, but only from one side of the wall. From the other side, corresponding to the one from the intestine out into the body, the molecules proved to lump together or to be destroyed by enzymes before they had time to affect the filter. But the research team went one step further. By adding a fatty acid as a shield for the peptide part, they managed to increase the porosity from the other side as well. What’s more, the scientists succeeded in guiding the effect on the intestinal wall, from rapid and short to a longer lasting impact.


The editorial in the December issue of the prestigious journal Molecular Pharmacology, written by Kim E. Barett of the University of California, commends the findings of the Uppsala team, stating that the discovery “seems likely to allow for the oral delivery of a wide variety of agents for which this previously was not possible, and thus the development of new and more effective therapeutic options for a wide range of human diseases.”

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>