Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Emory and CDC scientists explore why most breastfed infants of HIV-positive mothers resist infection


Although prolonged breastfeeding is well known to be a major route of transmission of HIV infection to infants and is estimated to cause one-third to one-half of new infant HIV-1 infections worldwide, the majority of breastfed infants with HIV-positive mothers remain uninfected, even after months of exposure.

Investigators at Emory University School of Medicine, the Centers for Disease Control and Prevention, the Emory Vaccine Center, and the University of Paris reviewed the scientific literature to pinpoint the reasons why many breastfed infants resist HIV, with the goal of devising future intervention strategies to prevent newborn infections. Their findings were published online in November and will be published in the December issue of The Lancet Infectious Diseases.

The researchers, led by Athena P. Kourtis, MD, PhD, MPH, formerly assistant professor of pediatrics at Emory University School of Medicine (now at Eastern Virginia Medical School and working at CDC) and Chris Ibegbu, PhD of the Emory Vaccine Center, identified several factors that have been cited by scientists as potentially enabling or preventing transmission of HIV through breastfeeding. Enabling factors could include the introduction of HIV into the gastrointestinal tract through a breach in the cell layer in the intestinal lining, or immune activation in the gastrointestinal tract could cause more HIV virus to reach this epithelial layer. Protective factors may include the hostile environment presented to viruses by the saliva and its various viral-inhibiting components.

The presence of HIV antibody in saliva already has been recognized in HIV-infected individuals, but scientists do not yet know whether this antibody is developed in non-infected breastfed infants, or whether it has a protective role against HIV. Natural killer (NK) cells or natural antibodies to HIV in exposed mucosal surfaces of infants could also play a role in resistance to HIV infection. Acquired T cell responses or specific antibody responses also may play a preventive role. Immune CD4 and CD8 T cells and antibodies in the mother’s milk have been studied as factors that could account for this protection.

"In the developing world, where alternatives exist, breastfeeding is not recommended for HIV-positive mothers, which in part explains our lack of knowledge about resistance to infection," Dr. Kourtis says. "In the developing world, however, breastfeeding often is the only practical option for feeding infants, which makes understanding the mechanisms of HIV transmission a research priority. Inconsistent research findings about the role of anti-HIV antibodies and HIV-specific T cell responses have left significant gaps in our understanding of HIV transmission through breastfeeding."

Dr. Kourtis believes that advances in laboratory methods will help scientists clarify which immune factors are most important in HIV protection and help in the development of carefully planned intervention strategies. These could possibly include giving antibodies to the mother in late pregnancy or to the newborn, together with antiretroviral prophylaxis, she explains. Some of these approaches will be tested soon in large international trials.

Other scientists involved in the study included CDC scientists Salvatore Butera, PhD and Ann Duerr, MD, PhD, MPH and Laurent Belec, MD, PhD, of the Institut de Recherces Biomedicales des Cordeliers, Universite Paris.

Tia Webster | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>